These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Brownian escape and force-driven transport through entropic barriers: Particle size effect. Cheng KL; Sheng YJ; Tsao HK J Chem Phys; 2008 Nov; 129(18):184901. PubMed ID: 19045425 [TBL] [Abstract][Full Text] [Related]
8. Entropic particle transport in periodic channels. Burada PS; Schmid G; Talkner P; Hänggi P; Reguera D; Rubí JM Biosystems; 2008; 93(1-2):16-22. PubMed ID: 18462863 [TBL] [Abstract][Full Text] [Related]
9. Effect of particle size oscillations on drift and diffusion along a periodically corrugated channel. Makhnovskii YA Phys Rev E; 2019 Mar; 99(3-1):032102. PubMed ID: 30999518 [TBL] [Abstract][Full Text] [Related]
10. Steering the potential barriers: entropic to energetic. Burada PS; Schmid G Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 1):051128. PubMed ID: 21230458 [TBL] [Abstract][Full Text] [Related]
11. Entropic transport of finite size particles. Riefler W; Schmid G; Burada PS; Hänggi P J Phys Condens Matter; 2010 Nov; 22(45):454109. PubMed ID: 21339597 [TBL] [Abstract][Full Text] [Related]
12. Biased diffusion in tubes of alternating diameter: Numerical study over a wide range of biasing force. Makhnovskii YA; Berezhkovskii AM; Antipov AE; Zitserman VY J Chem Phys; 2015 Nov; 143(17):174102. PubMed ID: 26547153 [TBL] [Abstract][Full Text] [Related]
13. Biased diffusion in tubes of alternating diameter: analytical treatment in the case of strong bias. Zitserman VY; Berezhkovskii AM; Antipov AE; Makhnovskii YA J Chem Phys; 2014 Dec; 141(21):214103. PubMed ID: 25481125 [TBL] [Abstract][Full Text] [Related]
14. Entropic dynamical hysteresis in a driven system. Mondal D; Das M; Ray DS Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031128. PubMed ID: 22587059 [TBL] [Abstract][Full Text] [Related]
16. Communication: drift velocity of Brownian particle in a periodically tapered tube induced by a time-periodic force with zero mean: dependence on the force period. Zitserman VY; Berezhkovskii AM; Antipov AE; Makhnovskii YA J Chem Phys; 2011 Sep; 135(12):121102. PubMed ID: 21974505 [TBL] [Abstract][Full Text] [Related]
17. Aris-Taylor dispersion in tubes with dead ends. Dagdug L; Berezhkovskii AM; Skvortsov AT J Chem Phys; 2014 Jul; 141(2):024705. PubMed ID: 25028036 [TBL] [Abstract][Full Text] [Related]
18. Effective diffusion coefficient of a Brownian particle in a periodically expanded conical tube. Antipov AE; Barzykin AV; Berezhkovskii AM; Makhnovskii YA; Zitserman VY; Aldoshin SM Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):054101. PubMed ID: 24329385 [TBL] [Abstract][Full Text] [Related]
19. Analytical treatment of biased diffusion in tubes with periodic dead ends. Berezhkovskii AM; Dagdug L J Chem Phys; 2011 Mar; 134(12):124109. PubMed ID: 21456647 [TBL] [Abstract][Full Text] [Related]
20. Aris-Taylor dispersion with drift and diffusion of particles on the tube wall. Berezhkovskii AM; Skvortsov AT J Chem Phys; 2013 Aug; 139(8):084101. PubMed ID: 24006968 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]