BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 21417329)

  • 1. Tuning the activity of Pt(111) for oxygen electroreduction by subsurface alloying.
    Stephens IE; Bondarenko AS; Perez-Alonso FJ; Calle-Vallejo F; Bech L; Johansson TP; Jepsen AK; Frydendal R; Knudsen BP; Rossmeisl J; Chorkendorff I
    J Am Chem Soc; 2011 Apr; 133(14):5485-91. PubMed ID: 21417329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Voltammetric surface dealloying of Pt bimetallic nanoparticles: an experimental and DFT computational analysis.
    Strasser P; Koh S; Greeley J
    Phys Chem Chem Phys; 2008 Jul; 10(25):3670-83. PubMed ID: 18563228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mixed-metal pt monolayer electrocatalysts for enhanced oxygen reduction kinetics.
    Zhang J; Vukmirovic MB; Sasaki K; Nilekar AU; Mavrikakis M; Adzic RR
    J Am Chem Soc; 2005 Sep; 127(36):12480-1. PubMed ID: 16144382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Cu/Pt near-surface alloy for water-gas shift catalysis.
    Knudsen J; Nilekar AU; Vang RT; Schnadt J; Kunkes EL; Dumesic JA; Mavrikakis M; Besenbacher F
    J Am Chem Soc; 2007 May; 129(20):6485-90. PubMed ID: 17469820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combinatorial screening of PtTiMe ternary alloys for oxygen electroreduction.
    He T; Kreidler E
    Phys Chem Chem Phys; 2008 Jul; 10(25):3731-8. PubMed ID: 18563234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of electronic perturbation in stability and activity of Pt-based alloy nanocatalysts for oxygen reduction.
    Hwang SJ; Kim SK; Lee JG; Lee SC; Jang JH; Kim P; Lim TH; Sung YE; Yoo SJ
    J Am Chem Soc; 2012 Dec; 134(48):19508-11. PubMed ID: 23131009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural, compositional and electrochemical characterization of Pt-Co oxygen-reduction catalysts.
    Axnanda S; Cummins KD; He T; Goodman DW; Soriaga MP
    Chemphyschem; 2010 May; 11(7):1468-75. PubMed ID: 20394098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pt monolayer on porous Pd-Cu alloys as oxygen reduction electrocatalysts.
    Shao M; Shoemaker K; Peles A; Kaneko K; Protsailo L
    J Am Chem Soc; 2010 Jul; 132(27):9253-5. PubMed ID: 20565078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Palladium monolayer and palladium alloy electrocatalysts for oxygen reduction.
    Shao MH; Huang T; Liu P; Zhang J; Sasaki K; Vukmirovic MB; Adzic RR
    Langmuir; 2006 Dec; 22(25):10409-15. PubMed ID: 17129009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Titanium oxynitride interlayer to influence oxygen reduction reaction activity and corrosion stability of Pt and Pt-Ni alloy.
    Tan X; Wang L; Zahiri B; Kohandehghan A; Karpuzov D; Lotfabad EM; Li Z; Eikerling MH; Mitlin D
    ChemSusChem; 2015 Jan; 8(2):361-76. PubMed ID: 25470445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical study on the adsorption of carbon oxides and oxidation of their adsorption products on platinum group metals and alloys.
    Siwek H; Lukaszewski M; Czerwiński A
    Phys Chem Chem Phys; 2008 Jul; 10(25):3752-65. PubMed ID: 18563236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Composition-controlled PtCo alloy nanocubes with tuned electrocatalytic activity for oxygen reduction.
    Choi SI; Lee SU; Kim WY; Choi R; Hong K; Nam KM; Han SW; Park JT
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):6228-34. PubMed ID: 23106417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of component distribution and nanoporosity in CuPt nanotubes on electrocatalysis of the oxygen reduction reaction.
    Guo H; Liu X; Bai C; Chen Y; Wang L; Zheng M; Dong Q; Peng DL
    ChemSusChem; 2015 Feb; 8(3):486-94. PubMed ID: 25505002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Niobium oxide-supported platinum ultra-low amount electrocatalysts for oxygen reduction.
    Sasaki K; Zhang L; Adzic RR
    Phys Chem Chem Phys; 2008 Jan; 10(1):159-67. PubMed ID: 18075695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combinatorial optimization of ternary Pt alloy catalysts for the electrooxidation of methanol.
    Strasser P
    J Comb Chem; 2008; 10(2):216-24. PubMed ID: 18257541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical investigations of the oxygen reduction reaction on Pt(111).
    Keith JA; Jerkiewicz G; Jacob T
    Chemphyschem; 2010 Sep; 11(13):2779-94. PubMed ID: 20726030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relating structural aspects of bimetallic Pt(3)Cr(1)/C nanoparticles to their electrocatalytic activity, stability, and selectivity in the oxygen reduction reaction.
    Taufany F; Pan CJ; Chou HL; Rick J; Chen YS; Liu DG; Lee JF; Tang MT; Hwang BJ
    Chemistry; 2011 Sep; 17(38):10724-35. PubMed ID: 21837730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlled synthesis of Pd-Pt alloy hollow nanostructures with enhanced catalytic activities for oxygen reduction.
    Hong JW; Kang SW; Choi BS; Kim D; Lee SB; Han SW
    ACS Nano; 2012 Mar; 6(3):2410-9. PubMed ID: 22360814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Truncated octahedral Pt(3)Ni oxygen reduction reaction electrocatalysts.
    Wu J; Zhang J; Peng Z; Yang S; Wagner FT; Yang H
    J Am Chem Soc; 2010 Apr; 132(14):4984-5. PubMed ID: 20334375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic performance of nanosized Pt-Au alloy catalyst in oxidation of methanol and toluene.
    Kim KJ; Kim YH; Ahn HG
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3795-9. PubMed ID: 18047061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.