These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 21417407)

  • 21. Impact of the N-terminal amino acid on the formation of pyrazines from peptides in Maillard model systems.
    Van Lancker F; Adams A; De Kimpe N
    J Agric Food Chem; 2012 May; 60(18):4697-708. PubMed ID: 22463717
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The naturally occurring furanones: formation and function from pheromone to food.
    Colin Slaughter J
    Biol Rev Camb Philos Soc; 1999 Aug; 74(3):259-76. PubMed ID: 10466251
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Formation of the reduced form of furaneol® (2,5-dimethyl-4-hydroxy-tetrahydrofuran-3-one) during the Maillard reaction through catalysis of amino acid metal salts.
    Nashalian O; Wang X; Yaylayan VA
    Food Chem; 2016 Nov; 210():43-8. PubMed ID: 27211618
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Formation of pyrazines and a novel pyrrole in Maillard model systems of 1,3-dihydroxyacetone and 2-oxopropanal.
    Adams A; Polizzi V; van Boekel M; De Kimpe N
    J Agric Food Chem; 2008 Mar; 56(6):2147-53. PubMed ID: 18318495
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Isotope labeling studies on the origin of 3,4-hexanedione and 1,2-butanedione in an alanine/glucose model system.
    Chu FL; Yaylayan VA
    J Agric Food Chem; 2009 Oct; 57(20):9740-6. PubMed ID: 19778056
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dimerization of azomethine ylides: an alternate route to pyrazine formation in the Maillard reaction.
    Guerra PV; Yaylayan VA
    J Agric Food Chem; 2010 Dec; 58(23):12523-9. PubMed ID: 21047136
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Formation of sugar-specific reactive intermediates from (13)C-labeled L-serines.
    Yaylayan VA; Keyhani A; Wnorowski A
    J Agric Food Chem; 2000 Mar; 48(3):636-41. PubMed ID: 10725127
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermally induced oxidative decarboxylation of copper complexes of amino acids and formation of strecker aldehyde.
    Nashalian O; Yaylayan VA
    J Agric Food Chem; 2014 Aug; 62(33):8518-23. PubMed ID: 25078730
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of a sotolon pathway in dry white wines.
    Pons A; Lavigne V; Landais Y; Darriet P; Dubourdieu D
    J Agric Food Chem; 2010 Jun; 58(12):7273-9. PubMed ID: 20486709
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Formation and reduction of furan in maillard reaction model systems consisting of various sugars/amino acids/furan precursors.
    Cho H; Lee KG
    J Agric Food Chem; 2014 Jun; 62(25):5978-82. PubMed ID: 24912018
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Model studies on the oxygen-induced formation of benzaldehyde from phenylacetaldehyde using pyrolysis GC-MS and FTIR.
    Chu FL; Yaylayan VA
    J Agric Food Chem; 2008 Nov; 56(22):10697-704. PubMed ID: 18954073
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chemoselective amide formation using O-(4-nitrophenyl)hydroxylamines and pyruvic acid derivatives.
    Kumar S; Sharma R; Garcia M; Kamel J; McCarthy C; Muth A; Phanstiel O
    J Org Chem; 2012 Dec; 77(23):10835-45. PubMed ID: 23190119
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Two omega-amino acid transaminases from Bacillus cereus.
    Nakano Y; Tokunaga H; Kitaoka S
    J Biochem; 1977 May; 81(5):1375-81. PubMed ID: 19432
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Zinc-mediated carbon radical addition to glyoxylic imines in aqueous media for the synthesis of alpha-amino acids.
    Ueda M; Miyabe H; Sugino H; Naito T
    Org Biomol Chem; 2005 Mar; 3(6):1124-8. PubMed ID: 15750657
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Formation of vinylogous compounds in model Maillard reaction systems.
    Stadler RH; Verzegnassi L; Varga N; Grigorov M; Studer A; Riediker S; Schilter B
    Chem Res Toxicol; 2003 Oct; 16(10):1242-50. PubMed ID: 14565766
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanistic pathways of formation of acrylamide from different amino acids.
    Yaylayan VA; Locas CP; Wnorowski A; O'Brien J
    Adv Exp Med Biol; 2005; 561():191-203. PubMed ID: 16438299
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prooxidant action of furanone compounds: implication of reactive oxygen species in the metal-dependent strand breaks and the formation of 8-hydroxy-2'-deoxyguanosine in DNA.
    Murakami K; Haneda M; Makino T; Yoshino M
    Food Chem Toxicol; 2007 Jul; 45(7):1258-62. PubMed ID: 17316945
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Novel formation of alpha-amino acids and their derivatives from oxo acids and ammonia in an aqueous medium.
    Yanagawa H; Makino Y; Sato K; Nishizawa M; Egami F
    J Biochem; 1982 Jun; 91(6):2087-90. PubMed ID: 7118864
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of copper(II) in the bridging reactions of (+)-catechin by glyoxylic acid in a model white wine.
    Clark AC; Prenzler PD; Scollary GR
    J Agric Food Chem; 2003 Oct; 51(21):6204-10. PubMed ID: 14518945
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Impact of glutathione on the formation of methylmethine- and carboxymethine-bridged (+)-catechin dimers in a model wine system.
    Sonni F; Moore EG; Clark AC; Chinnici F; Riponi C; Scollary GR
    J Agric Food Chem; 2011 Jul; 59(13):7410-8. PubMed ID: 21591782
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.