BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 21417470)

  • 21. Self-assembly nanoparticle based tripetaloid structure arrays as surface-enhanced Raman scattering substrates.
    Sun M; Qian C; Wu W; Yu W; Wang Y; Mao H
    Nanotechnology; 2012 Sep; 23(38):385303. PubMed ID: 22948251
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays.
    Gao H; Henzie J; Odom TW
    Nano Lett; 2006 Sep; 6(9):2104-8. PubMed ID: 16968034
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Symmetry breaking induced optical properties of gold open shell nanostructures.
    Ye J; Lagae L; Maes G; Borghs G; Van Dorpe P
    Opt Express; 2009 Dec; 17(26):23765-71. PubMed ID: 20052087
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Composite au nanostructures for fluorescence studies in visible light.
    Kravets VG; Zoriniants G; Burrows CP; Schedin F; Geim AK; Barnes WL; Grigorenko AN
    Nano Lett; 2010 Mar; 10(3):874-9. PubMed ID: 20143865
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Controllable nanofabrication of aggregate-like nanoparticle substrates and evaluation for surface-enhanced Raman spectroscopy.
    Wells SM; Retterer SD; Oran JM; Sepaniak MJ
    ACS Nano; 2009 Dec; 3(12):3845-53. PubMed ID: 19911835
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Plasmonic nanopillar arrays for large-area, high-enhancement surface-enhanced Raman scattering sensors.
    Caldwell JD; Glembocki O; Bezares FJ; Bassim ND; Rendell RW; Feygelson M; Ukaegbu M; Kasica R; Shirey L; Hosten C
    ACS Nano; 2011 May; 5(5):4046-55. PubMed ID: 21480637
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates.
    Talley CE; Jackson JB; Oubre C; Grady NK; Hollars CW; Lane SM; Huser TR; Nordlander P; Halas NJ
    Nano Lett; 2005 Aug; 5(8):1569-74. PubMed ID: 16089490
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles.
    Nam JM; Oh JW; Lee H; Suh YD
    Acc Chem Res; 2016 Dec; 49(12):2746-2755. PubMed ID: 27993009
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recent progress in fabrication of anisotropic nanostructures for surface-enhanced Raman spectroscopy.
    Qiu T; Zhang W; Chu PK
    Recent Pat Nanotechnol; 2009; 3(1):10-20. PubMed ID: 19149751
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tailored synthesis of superparamagnetic gold nanoshells with tunable optical properties.
    Zhang Q; Ge J; Goebl J; Hu Y; Sun Y; Yin Y
    Adv Mater; 2010 May; 22(17):1905-9. PubMed ID: 20526992
    [No Abstract]   [Full Text] [Related]  

  • 31. Surface-enhanced Raman scattering from ordered Ag nanocluster arrays.
    Schmidt JP; Cross SE; Buratto SK
    J Chem Phys; 2004 Dec; 121(21):10657-9. PubMed ID: 15549949
    [TBL] [Abstract][Full Text] [Related]  

  • 32. How gold nanoparticles have stayed in the light: the 3M's principle.
    Odom TW; Nehl CL
    ACS Nano; 2008 Apr; 2(4):612-6. PubMed ID: 19206589
    [TBL] [Abstract][Full Text] [Related]  

  • 33. UV/ozone-oxidized large-scale graphene platform with large chemical enhancement in surface-enhanced Raman scattering.
    Huh S; Park J; Kim YS; Kim KS; Hong BH; Nam JM
    ACS Nano; 2011 Dec; 5(12):9799-806. PubMed ID: 22070659
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fabrication of metallic nanostructures of sub-20 nm with an optimized process of E-beam lithography and lift-off.
    Yue W; Wang Z; Wang X; Chen L; Yang Y; Chew B; Syed A; Wong KC; Zhang X
    J Nanosci Nanotechnol; 2012 Jan; 12(1):696-9. PubMed ID: 22524042
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril "glue".
    Taylor RW; Lee TC; Scherman OA; Esteban R; Aizpurua J; Huang FM; Baumberg JJ; Mahajan S
    ACS Nano; 2011 May; 5(5):3878-87. PubMed ID: 21488693
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Profiling the near field of a plasmonic nanoparticle with Raman-based molecular rulers.
    Lal S; Grady NK; Goodrich GP; Halas NJ
    Nano Lett; 2006 Oct; 6(10):2338-43. PubMed ID: 17034107
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Detuned electrical dipoles for plasmonic sensing.
    Evlyukhin AB; Bozhevolnyi SI; Pors A; Nielsen MG; Radko IP; Willatzen M; Albrektsen O
    Nano Lett; 2010 Nov; 10(11):4571-7. PubMed ID: 20879722
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Suppression of the plasmon resonance in Au/CdS colloidal nanocomposites.
    Khon E; Mereshchenko A; Tarnovsky AN; Acharya K; Klinkova A; Hewa-Kasakarage NN; Nemitz I; Zamkov M
    Nano Lett; 2011 Apr; 11(4):1792-9. PubMed ID: 21417253
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Low-temperature plasmonics of metallic nanostructures.
    Bouillard JS; Dickson W; O'Connor DP; Wurtz GA; Zayats AV
    Nano Lett; 2012 Mar; 12(3):1561-5. PubMed ID: 22339644
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Highly controlled surface-enhanced Raman scattering chips using nanoengineered gold blocks.
    Yokota Y; Ueno K; Misawa H
    Small; 2011 Jan; 7(2):252-8. PubMed ID: 21213390
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.