These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 21417470)

  • 61. Simple and versatile route to high yield face-to-face dimeric assembly of Ag nanocubes and their surface plasmonic properties.
    Uchida S; Taguchi A; Mitani M; ichimura T; Kawata S; Yamamura K; Zettsu N
    J Nanosci Nanotechnol; 2011 Apr; 11(4):2890-6. PubMed ID: 21776649
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Actively tuned plasmons on elastomerically driven Au nanoparticle dimers.
    Huang F; Baumberg JJ
    Nano Lett; 2010 May; 10(5):1787-92. PubMed ID: 20408552
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Surface-enhanced Raman trajectories on a nano-dumbbell: transition from field to charge transfer plasmons as the spheres fuse.
    Banik M; El-Khoury PZ; Nag A; Rodriguez-Perez A; Guarrottxena N; Bazan GC; Apkarian VA
    ACS Nano; 2012 Nov; 6(11):10343-54. PubMed ID: 23092179
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Optical properties of star-shaped gold nanoparticles.
    Nehl CL; Liao H; Hafner JH
    Nano Lett; 2006 Apr; 6(4):683-8. PubMed ID: 16608264
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Evolution of nonlinear optical properties: from gold atomic clusters to plasmonic nanocrystals.
    Philip R; Chantharasupawong P; Qian H; Jin R; Thomas J
    Nano Lett; 2012 Sep; 12(9):4661-7. PubMed ID: 22845756
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The SERS activity of a supported Ag nanocube strongly depends on its orientation relative to laser polarization.
    McLellan JM; Li ZY; Siekkinen AR; Xia Y
    Nano Lett; 2007 Apr; 7(4):1013-7. PubMed ID: 17375965
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Surface plasmon resonance-induced visible light photocatalytic reduction of graphene oxide: using Ag nanoparticles as a plasmonic photocatalyst.
    Wu T; Liu S; Luo Y; Lu W; Wang L; Sun X
    Nanoscale; 2011 May; 3(5):2142-4. PubMed ID: 21451827
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The preparation of silver nanoparticle decorated silica nanowires on fused quartz as reusable versatile nanostructured surface-enhanced Raman scattering substrates.
    Hwang JS; Chen KY; Hong SJ; Chen SW; Syu WS; Kuo CW; Syu WY; Lin TY; Chiang HP; Chattopadhyay S; Chen KH; Chen LC
    Nanotechnology; 2010 Jan; 21(2):025502. PubMed ID: 19955621
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Nanorice: a hybrid plasmonic nanostructure.
    Wang H; Brandl DW; Le F; Nordlander P; Halas NJ
    Nano Lett; 2006 Apr; 6(4):827-32. PubMed ID: 16608292
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Free-standing 1D assemblies of plasmonic nanoparticles.
    Su B; Wu Y; Tang Y; Chen Y; Cheng W; Jiang L
    Adv Mater; 2013 Aug; 25(29):3968-72. PubMed ID: 23716138
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Plasmonic oligomers: the role of individual particles in collective behavior.
    Hentschel M; Dregely D; Vogelgesang R; Giessen H; Liu N
    ACS Nano; 2011 Mar; 5(3):2042-50. PubMed ID: 21344858
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Metal nanoparticles with gain toward single-molecule detection by surface-enhanced Raman scattering.
    Li ZY; Xia Y
    Nano Lett; 2010 Jan; 10(1):243-9. PubMed ID: 19958019
    [TBL] [Abstract][Full Text] [Related]  

  • 73. FDTD simulations of localization and enhancements on fractal plasmonics nanostructures.
    Buil S; Laverdant J; Berini B; Maso P; Hermier JP; Quélin X
    Opt Express; 2012 May; 20(11):11968-75. PubMed ID: 22714182
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Plasmonic coupling of bow tie antennas with Ag nanowire.
    Fang Z; Fan L; Lin C; Zhang D; Meixner AJ; Zhu X
    Nano Lett; 2011 Apr; 11(4):1676-80. PubMed ID: 21344917
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Beamed Raman: directional excitation and emission enhancement in a plasmonic crystal double resonance SERS substrate.
    Chu Y; Zhu W; Wang D; Crozier KB
    Opt Express; 2011 Oct; 19(21):20054-68. PubMed ID: 21997016
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A nanoforest structure for practical surface-enhanced Raman scattering substrates.
    Seol ML; Choi SJ; Baek DJ; Park TJ; Ahn JH; Lee SY; Choi YK
    Nanotechnology; 2012 Mar; 23(9):095301. PubMed ID: 22322132
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Tunable SERS in gold nanorod dimers through strain control on an elastomeric substrate.
    Alexander KD; Skinner K; Zhang S; Wei H; Lopez R
    Nano Lett; 2010 Nov; 10(11):4488-93. PubMed ID: 20923232
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Colloidal gold and silver triangular nanoprisms.
    Millstone JE; Hurst SJ; Métraux GS; Cutler JI; Mirkin CA
    Small; 2009 Mar; 5(6):646-64. PubMed ID: 19306458
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Structure and optical properties of silica-supported Ag-Au nanoparticles.
    Barreca D; Gasparotto A; Maragno C; Tondello E; Gialanella S
    J Nanosci Nanotechnol; 2007 Jul; 7(7):2480-6. PubMed ID: 17663268
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Three-dimensional multi-walled carbon nanotube arrays coated by gold-sol as a surface-enhanced Raman scattering substrate.
    Zhang J; Fan T; Zhang X; Lai C; Zhu Y
    Appl Opt; 2014 Feb; 53(6):1159-65. PubMed ID: 24663316
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.