BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 2141786)

  • 1. Stimulation of rat red blood cell glycolysis by phenylhydrazine hydrochloride.
    Kostić MM; Dragićević L; Zirković R; Müller M; Rapoport SM
    Biomed Biochim Acta; 1990; 49(1):17-25. PubMed ID: 2141786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of phenylhydrazine hydrochloride on energy metabolism in rabbit erythrocytes and reticulocytes.
    Zivkovic RV; Kostic MM; Siems W; Werner A; Mojsilovic LP; Gerber G
    Biomed Biochim Acta; 1990; 49(2-3):S172-7. PubMed ID: 2386504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of phenylhydrazine on red blood cell metabolism.
    Magnani M; Rossi L; Cucchiarini L; Stocchi V; Fornaini G
    Cell Biochem Funct; 1988 Jul; 6(3):175-82. PubMed ID: 3409478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The role of cAMP in the energy metabolism of human erythrocytes].
    Mojsilović L; Zivković R; Kostić M
    Bilt Hematol Transfuz; 1981; 9(1-3):53-9. PubMed ID: 6299268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The breakdown of adenine nucleotides in glucose-depleted human red cells.
    Rapoport I; Rapoport S; Maretzki D; Elsner R
    Acta Biol Med Ger; 1979; 38(10):1419-29. PubMed ID: 44952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of pyruvate on glycolysis and the maintenance of adenine nucleotides in red cells.
    Rapoport SM; Rapoport I; Schauer M; Heinrich R
    Acta Biol Med Ger; 1981; 40(4-5):669-76. PubMed ID: 6458987
    [No Abstract]   [Full Text] [Related]  

  • 7. [Intensity of glycolysis and energy metabolism in erythrocytes in experimental hypervitaminosis A].
    Kriukova LV; Grozina AA; Kamaeva SI
    Vopr Med Khim; 1976; 22(5):640-2. PubMed ID: 138257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glucose metabolism is accelerated by exposure to t-butylhydroperoxide during NADH consumption in human erythrocytes.
    Ogasawara Y; Funakoshi M; Ishii K
    Blood Cells Mol Dis; 2008; 41(3):237-43. PubMed ID: 18706836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adrenergic blockade reduces skeletal muscle glycolysis and Na(+), K(+)-ATPase activity during hemorrhage.
    McCarter FD; James JH; Luchette FA; Wang L; Friend LA; King JK; Evans JM; George MA; Fischer JE
    J Surg Res; 2001 Aug; 99(2):235-44. PubMed ID: 11469892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accumulation of phosphate esters and decline of ATP in red cells incubated in vitro is caused by lack of pyruvate.
    Rapoport I; Rapoport S; Elsner R
    Acta Biol Med Ger; 1981; 40(2):115-21. PubMed ID: 7269982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effect of inhalation of an air mixture with hydrogen sulfide-containing industrial natural gas on glycolysis and lipid peroxidation in rats].
    Seredenko MM; Miniaĭlenko TD; Velikanov EB; Karakin AV; Rezaev AA
    Fiziol Zh (1978); 1991; 37(5):70-4. PubMed ID: 1790819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alterations of the glycolytic pathway and adenine nucleotide state in livers of clofibrate treated rats.
    Wilkening J; Schwandt P
    Horm Metab Res; 1977 Mar; 9(2):132-6. PubMed ID: 140842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucose dependence of glycolysis, hexose monophosphate shunt activity, energy status, and the polyol pathway in retinas isolated from normal (nondiabetic) rats.
    Winkler BS; Arnold MJ; Brassell MA; Sliter DR
    Invest Ophthalmol Vis Sci; 1997 Jan; 38(1):62-71. PubMed ID: 9008631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of physiologic concentrations of lactate, pyruvate and ascorbate on glucose metabolism in unstressed and oxidatively stressed human red blood cells.
    Sullivan SG; Stern A
    Biochem Pharmacol; 1983 Oct; 32(19):2891-902. PubMed ID: 6626261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accumulation of pyruvate in phenylhydrazine-treated avian red blood cells.
    GEBER WF; ROSTORFER HH
    Am J Physiol; 1957 Sep; 190(3):543-50. PubMed ID: 13470091
    [No Abstract]   [Full Text] [Related]  

  • 16. Regulation of glycolysis in the erythrocyte: role of the lactate/pyruvate and NAD/NADH ratios.
    Tilton WM; Seaman C; Carriero D; Piomelli S
    J Lab Clin Med; 1991 Aug; 118(2):146-52. PubMed ID: 1856577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro effect of plasma during phenylhydrazine-induced erythrocyte oxidative damage.
    Lucio Cazana FJ; Diez Marques ML; Jimenez A; Rodriguez Puyol M
    Biomed Biochim Acta; 1990; 49(5):425-8. PubMed ID: 2271014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lactate, pyruvate, AMP, ADP and ATP content of central nervous system during chronic hypercapnia.
    Navion S; Bercovich C; Agrest A
    Medicina (B Aires); 1971; 31(2):107-12. PubMed ID: 5566440
    [No Abstract]   [Full Text] [Related]  

  • 19. The effects of calcium on glycolysis and ATP concentration in complete and membrane-poor hemolyzates of human erythrocytes.
    Brox D; Petermann B; Frunder H
    Acta Biol Med Ger; 1977; 36(5-6):611-9. PubMed ID: 414494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glucose metabolism of oxidatively stressed human red blood cells incubated in plasma or medium containing physiologic concentrations of lactate, pyruvate and ascorbate.
    Sullivan SG; Stern A
    Biochem Pharmacol; 1984 May; 33(9):1417-21. PubMed ID: 6732859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.