These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 21418049)

  • 1. Detecting disease outbreaks using local spatiotemporal methods.
    Zhao Y; Zeng D; Herring AH; Ising A; Waller A; Richardson D; Kosorok MR
    Biometrics; 2011 Dec; 67(4):1508-17. PubMed ID: 21418049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Forecasting Influenza Outbreaks in Boroughs and Neighborhoods of New York City.
    Yang W; Olson DR; Shaman J
    PLoS Comput Biol; 2016 Nov; 12(11):e1005201. PubMed ID: 27855155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting outbreak detection in public health surveillance: quantitative analysis to enable evidence-based method selection.
    Buckeridge DL; Okhmatovskaia A; Tu S; O'Connor M; Nyulas C; Musen MA
    AMIA Annu Symp Proc; 2008 Nov; 2008():76-80. PubMed ID: 18999264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dengue disease outbreak detection.
    Dayama P; Sampath K
    Stud Health Technol Inform; 2014; 205():1105-9. PubMed ID: 25160360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A space-time scan statistic for detecting emerging outbreaks.
    Tango T; Takahashi K; Kohriyama K
    Biometrics; 2011 Mar; 67(1):106-15. PubMed ID: 20374242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A multi-level spatial clustering algorithm for detection of disease outbreaks.
    Que J; Tsui FC
    AMIA Annu Symp Proc; 2008 Nov; 2008():611-5. PubMed ID: 18999304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Active surveillance of small-scale spatial cancer clusters: presentation of a new monitoring approach for the epidemiological Cancer Registry of Lower Saxony].
    Kieschke J; Hoopmann M
    Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz; 2014 Jan; 57(1):33-40. PubMed ID: 24357170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Statistical monitoring of the hand, foot and mouth disease in China.
    Zhang J; Kang Y; Yang Y; Qiu P
    Biometrics; 2015 Sep; 71(3):841-50. PubMed ID: 25832170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measures of disassortativeness and their application to directly transmitted infections.
    Farrington CP; Whitaker HJ; Wallinga J; Manfredi P
    Biom J; 2009 Jun; 51(3):387-407. PubMed ID: 19492337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Excess mortality as an epidemic intelligence tool in chikungunya mapping.
    Ramchurn SK; Goorah SS; Makhan M; Moheeput K
    Euro Surveill; 2008 Feb; 13(7):. PubMed ID: 18445418
    [No Abstract]   [Full Text] [Related]  

  • 11. Template-driven spatial-temporal outbreak simulation for outbreak detection evaluation.
    Zhang M; Wallstrom GL
    AMIA Annu Symp Proc; 2008 Nov; 2008():854-8. PubMed ID: 18999301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated outbreak detection: a quantitative retrospective analysis.
    Stern L; Lightfoot D
    Epidemiol Infect; 1999 Feb; 122(1):103-10. PubMed ID: 10098792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using multitype branching processes to quantify statistics of disease outbreaks in zoonotic epidemics.
    Singh S; Schneider DJ; Myers CR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032702. PubMed ID: 24730870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Outbreak detection through automated surveillance: a review of the determinants of detection.
    Buckeridge DL
    J Biomed Inform; 2007 Aug; 40(4):370-9. PubMed ID: 17095301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Active monitoring of cancer clusters: comments from an epidemiological perspective].
    Becker N
    Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz; 2014 Jan; 57(1):41-6. PubMed ID: 24357171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A hybrid hierarchical Bayesian model for spatiotemporal surveillance data.
    Zou J; Zhang Z; Yan H
    Stat Med; 2018 Dec; 37(28):4216-4233. PubMed ID: 30039588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential Early Identification of a Large Campylobacter Outbreak Using Alternative Surveillance Data Sources: Autoregressive Modelling and Spatiotemporal Clustering.
    Adnan M; Gao X; Bai X; Newbern E; Sherwood J; Jones N; Baker M; Wood T; Gao W
    JMIR Public Health Surveill; 2020 Sep; 6(3):e18281. PubMed ID: 32940617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Syndromic surveillance: STL for modeling, visualizing, and monitoring disease counts.
    Hafen RP; Anderson DE; Cleveland WS; Maciejewski R; Ebert DS; Abusalah A; Yakout M; Ouzzani M; Grannis SJ
    BMC Med Inform Decis Mak; 2009 Apr; 9():21. PubMed ID: 19383138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Early and Real-Time Detection of Seasonal Influenza Onset.
    Won M; Marques-Pita M; Louro C; Gonçalves-Sá J
    PLoS Comput Biol; 2017 Feb; 13(2):e1005330. PubMed ID: 28158192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recursive least squares background prediction of univariate syndromic surveillance data.
    Najmi AH; Burkom H
    BMC Med Inform Decis Mak; 2009 Jan; 9():4. PubMed ID: 19149886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.