BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 21418081)

  • 1. A practical framework for the construction of a biotracing model: application to Salmonella in the pork slaughter chain.
    Smid JH; Swart AN; Havelaar AH; Pielaat A
    Risk Anal; 2011 Sep; 31(9):1434-50. PubMed ID: 21418081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A biotracing model of Salmonella in the pork production chain.
    Smid JH; Heres L; Havelaar AH; Pielaat A
    J Food Prot; 2012 Feb; 75(2):270-80. PubMed ID: 22289587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studying the effects of POs and MCs on the Salmonella ALOP with a quantitative risk assessment model for beef production.
    Tuominen P; Ranta J; Maijala R
    Int J Food Microbiol; 2007 Aug; 118(1):35-51. PubMed ID: 17658191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Risk profiles of pork and poultry meat and risk ratings of various pathogen/product combinations.
    Mataragas M; Skandamis PN; Drosinos EH
    Int J Food Microbiol; 2008 Aug; 126(1-2):1-12. PubMed ID: 18602180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NUSAP method for evaluating the data quality in a quantitative microbial risk assessment model for Salmonella in the pork production chain.
    Boone I; Van der Stede Y; Bollaerts K; Vose D; Maes D; Dewulf J; Messens W; Daube G; Aerts M; Mintiens K
    Risk Anal; 2009 Apr; 29(4):502-17. PubMed ID: 19192236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of Salmonella Contamination in the Pig Slaughterhouse.
    Swart AN; Evers EG; Simons RL; Swanenburg M
    Risk Anal; 2016 Mar; 36(3):498-515. PubMed ID: 26857531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A cross-sectional study of Salmonella in pork products in Chiang Mai, Thailand.
    Sanguankiat A; Pinthong R; Padungtod P; Baumann MP; Zessin KH; Srikitjakarn L; Fries R
    Foodborne Pathog Dis; 2010 Aug; 7(8):873-8. PubMed ID: 20482229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Bayesian approach to quantify the contribution of animal-food sources to human salmonellosis.
    Hald T; Vose D; Wegener HC; Koupeev T
    Risk Anal; 2004 Feb; 24(1):255-69. PubMed ID: 15028016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimating the probability and level of contamination with Salmonella of feed for finishing pigs produced in Switzerland--the impact of the production pathway.
    Sauli I; Danuser J; Geeraerd AH; Van Impe JF; Rüfenacht J; Bissig-Choisat B; Wenk C; Stärk KD
    Int J Food Microbiol; 2005 Apr; 100(1-3):289-310. PubMed ID: 15854713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epidemiological investigations into the sources of Salmonella contamination of pork.
    Swanenburg M; Berends BR; Urlings HA; Snijders JM; van Knapen F
    Berl Munch Tierarztl Wochenschr; 2001; 114(9-10):356-9. PubMed ID: 11570177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of three modelling approaches for quantitative risk assessment using the case study of Salmonella spp. in poultry meat.
    Parsons DJ; Orton TG; D'Souza J; Moore A; Jones R; Dodd CE
    Int J Food Microbiol; 2005 Jan; 98(1):35-51. PubMed ID: 15617799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of enterobacterial repetitive intergenic consensus-polymerase chain reaction to trace the fate of generic Escherichia coli within a high capacity pork slaughter line.
    Namvar A; Warriner K
    Int J Food Microbiol; 2006 Apr; 108(2):155-63. PubMed ID: 16386814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inferring an augmented Bayesian network to confront a complex quantitative microbial risk assessment model with durability studies: application to Bacillus cereus on a courgette purée production chain.
    Rigaux C; Ancelet S; Carlin F; Nguyen-thé C; Albert I
    Risk Anal; 2013 May; 33(5):877-92. PubMed ID: 22967223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a quantitative microbial risk assessment for human salmonellosis through household consumption of fresh minced pork meat in Belgium.
    Bollaerts KE; Messens W; Delhalle L; Aerts M; Van der Stede Y; Dewulf J; Quoilin S; Maes D; Mintiens K; Grijspeerdt K
    Risk Anal; 2009 Jun; 29(6):820-40. PubMed ID: 19392678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative risk assessment from farm to fork and beyond: a global Bayesian approach concerning food-borne diseases.
    Albert I; Grenier E; Denis JB; Rousseau J
    Risk Anal; 2008 Apr; 28(2):557-71. PubMed ID: 18419669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A QMRA Model for Salmonella in Pork Products During Preparation and Consumption.
    Swart AN; van Leusden F; Nauta MJ
    Risk Anal; 2016 Mar; 36(3):516-30. PubMed ID: 26857651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Salmonella surveillance and control at post-harvest in the Belgian pork meat chain.
    Delhalle L; Saegerman C; Farnir F; Korsak N; Maes D; Messens W; De Sadeleer L; De Zutter L; Daube G
    Food Microbiol; 2009 May; 26(3):265-71. PubMed ID: 19269567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Quantitative Microbiological Risk Assessment for Salmonella in Pigs for the European Union.
    Snary EL; Swart AN; Simons RR; Domingues AR; Vigre H; Evers EG; Hald T; Hill AA
    Risk Anal; 2016 Mar; 36(3):437-49. PubMed ID: 27002672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the Human Risk of Salmonellosis Related to Consumption of Pork Products in Different E.U. Countries Based on a QMRA.
    Vigre H; Barfoed K; Swart AN; Simons RR; Hill AA; Snary EL; Hald T
    Risk Anal; 2016 Mar; 36(3):531-45. PubMed ID: 26857423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variability and uncertainty analysis of the cross-contamination ratios of salmonella during pork cutting.
    Smid J; de Jonge R; Havelaar AH; Pielaat A
    Risk Anal; 2013 Jun; 33(6):1100-15. PubMed ID: 23078187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.