These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 214181)

  • 1. Distribution of adenosine 5'-triphosphate (ATP)-dependent hexose kinases in microorganisms.
    Delvalle JA; Asensio C
    Biosystems; 1978 Aug; 10(3):265-82. PubMed ID: 214181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of isoforms of hexose kinases in rice embryo.
    Guglielminetti L; Perata P; Morita A; Loreti E; Yamaguchi J; Alpi A
    Phytochemistry; 2000 Jan; 53(2):195-200. PubMed ID: 10680171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous purification and characterization of glucokinase, fructokinase and glucose-6-phosphate dehydrogenase from Zymomonas mobilis.
    Scopes RK; Testolin V; Stoter A; Griffiths-Smith K; Algar EM
    Biochem J; 1985 Jun; 228(3):627-34. PubMed ID: 2992451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Factors affecting hexose phosphorylation in Acetobacter xylinum.
    Benziman M; Rivetz B
    J Bacteriol; 1972 Aug; 111(2):325-33. PubMed ID: 5053462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The hexokinase of the hyperthermophile Thermoproteus tenax. ATP-dependent hexokinases and ADP-dependent glucokinases, teo alternatives for glucose phosphorylation in Archaea.
    Dörr C; Zaparty M; Tjaden B; Brinkmann H; Siebers B
    J Biol Chem; 2003 May; 278(21):18744-53. PubMed ID: 12626506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subcellular distribution and kinetic properties of cytosolic and non-cytosolic hexokinases in maize seedling roots: implications for hexose phosphorylation.
    da-Silva WS; Rezende GL; Galina A
    J Exp Bot; 2001 Jun; 52(359):1191-201. PubMed ID: 11432937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of glucose metabolism in pancreatic islets.
    Trus MD; Zawalich WS; Burch PT; Berner DK; Weill VA; Matschinsky FM
    Diabetes; 1981 Nov; 30(11):911-22. PubMed ID: 6271617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Partial purification and properties of a mannofructokinase from Streptococcus mutans SL-1.
    Porter EV; Chassy BM; Holmlund CE
    Infect Immun; 1980 Oct; 30(1):43-50. PubMed ID: 6254885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cloning and biochemical characterisation of Aspergillus niger hexokinase--the enzyme is strongly inhibited by physiological concentrations of trehalose 6-phosphate.
    Panneman H; Ruijter GJ; van den Broeck HC; Visser J
    Eur J Biochem; 1998 Nov; 258(1):223-32. PubMed ID: 9851713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mechanism of guanosine triphosphate depletion in the liver after a fructose load. The role of fructokinase.
    Phillips MI; Davies DR
    Biochem J; 1985 Jun; 228(3):667-71. PubMed ID: 2992452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cooperative interactions in hexokinase D ("glucokinase"). Kinetic and fluorescence studies.
    Cárdenas ML; Rabajille E; Trayer IP; Niemeyer H
    Arch Biol Med Exp; 1985 Dec; 18(3-4):273-84. PubMed ID: 3879819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suppression of kinetic cooperativity of hexokinase D (glucokinase) by competitive inhibitors. A slow transition model.
    Cárdenas ML; Rabajille E; Niemeyer H
    Eur J Biochem; 1984 Nov; 145(1):163-71. PubMed ID: 6489350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of energy metabolism in Trypanosoma (Schizotrypanum) cruzi epimastigotes. I. Hexokinase and phosphofructokinase.
    Urbina JA; Crespo A
    Mol Biochem Parasitol; 1984 Apr; 11():225-39. PubMed ID: 6235452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glucokinase and fructokinase of Trichomonas vaginalis and Tritrichomonas foetus.
    Mertens E; Müller M
    J Protozool; 1990; 37(5):384-8. PubMed ID: 2213652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic, chromatographic and electrophoretic studies on glucose-phosphorylating enzymes of rat intestinal mucosa.
    Vera ML; Cárdenas ML; Niemeyer H
    Arch Biochem Biophys; 1984 Feb; 229(1):237-45. PubMed ID: 6322688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization and molecular cloning of a novel enzyme, inorganic polyphosphate/ATP-glucomannokinase, of Arthrobacter sp. strain KM.
    Mukai T; Kawai S; Matsukawa H; Matuo Y; Murata K
    Appl Environ Microbiol; 2003 Jul; 69(7):3849-57. PubMed ID: 12839753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization and compartmentation, in green leaves, of hexokinases with different specificities for glucose, fructose, and mannose and for nucleoside triphosphates.
    Schnarrenberger C
    Planta; 1990 May; 181(2):249-55. PubMed ID: 24196745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Some properties of rat-liver glucose--adenosine triphosphate phosphotransferases.
    McLean P; Brown J
    Biochem J; 1966 Sep; 100(3):793-800. PubMed ID: 5969293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sugar specificity of human beta-cell glucokinase: correlation of molecular models with kinetic measurements.
    Xu LZ; Weber IT; Harrison RW; Gidh-Jain M; Pilkis SJ
    Biochemistry; 1995 May; 34(18):6083-92. PubMed ID: 7742312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ATP-dependent glucokinase from the hyperthermophilic bacterium Thermotoga maritima represents an extremely thermophilic ROK glucokinase with high substrate specificity.
    Hansen T; Schönheit P
    FEMS Microbiol Lett; 2003 Sep; 226(2):405-11. PubMed ID: 14553940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.