These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 21418205)

  • 21. Absence of PI3Kgamma leads to increased leukocyte apoptosis and diminished severity of experimental autoimmune encephalomyelitis.
    Rodrigues DH; Vilela MC; Barcelos LS; Pinho V; Teixeira MM; Teixeira AL
    J Neuroimmunol; 2010 May; 222(1-2):90-4. PubMed ID: 20303183
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lessons from multiple sclerosis: models, concepts, observations.
    Wekerle H
    Ann Rheum Dis; 2008 Dec; 67 Suppl 3():iii56-60. PubMed ID: 19022815
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of the humoral immune system in multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE).
    Ziemssen T; Ziemssen F
    Autoimmun Rev; 2005 Sep; 4(7):460-7. PubMed ID: 16137612
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Is multiple sclerosis an autoimmune disease?
    Gulcher JR; Vartanian T; Stefansson K
    Clin Neurosci; 1994; 2(3-4):246-52. PubMed ID: 7749894
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chemokine regulation of experimental autoimmune encephalomyelitis: temporal and spatial expression patterns govern disease pathogenesis.
    Karpus WJ; Ransohoff RM
    J Immunol; 1998 Sep; 161(6):2667-71. PubMed ID: 9743321
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An acidic polysaccharide of Panax ginseng ameliorates experimental autoimmune encephalomyelitis and induces regulatory T cells.
    Hwang I; Ahn G; Park E; Ha D; Song JY; Jee Y
    Immunol Lett; 2011 Aug; 138(2):169-78. PubMed ID: 21524666
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genetics of experimental autoimmune encephalomyelitis in the mouse.
    Andersson A; Karlsson J
    Arch Immunol Ther Exp (Warsz); 2004; 52(5):316-25. PubMed ID: 15507872
    [TBL] [Abstract][Full Text] [Related]  

  • 28. What transgenic and knockout mouse models teach us about experimental autoimmune encephalomyelitis.
    Fazekas G; Tabira T
    Rev Immunogenet; 2000; 2(1):115-32. PubMed ID: 11324684
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Multiple sclerosis and experimental autoimmune encephalomyelitis].
    Béraud-Juven E
    Rev Prat; 1994 Jan; 44(1):69-74. PubMed ID: 8178062
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Current gene-mapping strategies in experimental models of multiple sclerosis.
    Becanovic K; Jagodic M; Wallström E; Olsson T
    Scand J Immunol; 2004; 60(1-2):39-51. PubMed ID: 15238072
    [TBL] [Abstract][Full Text] [Related]  

  • 31. New genetic loci that control susceptibility and symptoms of experimental allergic encephalomyelitis in inbred mice.
    Butterfield RJ; Sudweeks JD; Blankenhorn EP; Korngold R; Marini JC; Todd JA; Roper RJ; Teuscher C
    J Immunol; 1998 Aug; 161(4):1860-7. PubMed ID: 9712054
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Intergenomic consensus in multifactorial inheritance loci: the case of multiple sclerosis.
    Serrano-Fernández P; Ibrahim SM; Zettl UK; Thiesen HJ; Gödde R; Epplen JT; Möller S
    Genes Immun; 2004 Dec; 5(8):615-20. PubMed ID: 15573086
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Immunologic studies of chronic relapsing EAE in guinea pigs: similarities to multiple sclerosis.
    Mehta PD; Lassmann H; Wisniewski HM
    J Immunol; 1981 Jul; 127(1):334-8. PubMed ID: 7240747
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lower motor neuron loss in multiple sclerosis and experimental autoimmune encephalomyelitis.
    Vogt J; Paul F; Aktas O; Müller-Wielsch K; Dörr J; Dörr S; Bharathi BS; Glumm R; Schmitz C; Steinbusch H; Raine CS; Tsokos M; Nitsch R; Zipp F
    Ann Neurol; 2009 Sep; 66(3):310-22. PubMed ID: 19798635
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Estrogen treatment induces a novel population of regulatory cells, which suppresses experimental autoimmune encephalomyelitis.
    Matejuk A; Bakke AC; Hopke C; Dwyer J; Vandenbark AA; Offner H
    J Neurosci Res; 2004 Jul; 77(1):119-26. PubMed ID: 15197745
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lesional accumulation of RhoA(+) cells in brains of experimental autoimmune encephalomyelitis and multiple sclerosis.
    Zhang Z; Schittenhelm J; Meyermann R; Schluesener HJ
    Neuropathol Appl Neurobiol; 2008 Apr; 34(2):231-40. PubMed ID: 17983427
    [TBL] [Abstract][Full Text] [Related]  

  • 37. T-cell-mediated disruption of the neuronal microtubule network: correlation with early reversible axonal dysfunction in acute experimental autoimmune encephalomyelitis.
    Shriver LP; Dittel BN
    Am J Pathol; 2006 Sep; 169(3):999-1011. PubMed ID: 16936273
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Immunological basis for the development of tissue inflammation and organ-specific autoimmunity in animal models of multiple sclerosis.
    Korn T; Mitsdoerffer M; Kuchroo VK
    Results Probl Cell Differ; 2010; 51():43-74. PubMed ID: 19513635
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulation of autoimmune encephalomyelitis by toll-like receptors.
    Marta M; Meier UC; Lobell A
    Autoimmun Rev; 2009 May; 8(6):506-9. PubMed ID: 19211042
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Epicutaneous (EC) immunization with myelin basic protein (MBP) induces TCRalphabeta+ CD4+ CD8+ double positive suppressor cells that protect from experimental autoimmune encephalomyelitis (EAE).
    Tutaj M; Szczepanik M
    J Autoimmun; 2007 Jun; 28(4):208-15. PubMed ID: 17442539
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.