BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 21418356)

  • 1. Rice CYP734As function as multisubstrate and multifunctional enzymes in brassinosteroid catabolism.
    Sakamoto T; Kawabe A; Tokida-Segawa A; Shimizu B; Takatsuto S; Shimada Y; Fujioka S; Mizutani M
    Plant J; 2011 Jul; 67(1):1-12. PubMed ID: 21418356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rice CYP734A cytochrome P450s inactivate brassinosteroids in Arabidopsis.
    Thornton LE; Peng H; Neff MM
    Planta; 2011 Dec; 234(6):1151-62. PubMed ID: 21735198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Castasterone is a likely end product of brassinosteroid biosynthetic pathway in rice.
    Kim BK; Fujioka S; Takatsuto S; Tsujimoto M; Choe S
    Biochem Biophys Res Commun; 2008 Oct; 374(4):614-9. PubMed ID: 18656444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tomato cytochrome P450 CYP734A7 functions in brassinosteroid catabolism.
    Ohnishi T; Nomura T; Watanabe B; Ohta D; Yokota T; Miyagawa H; Sakata K; Mizutani M
    Phytochemistry; 2006 Sep; 67(17):1895-906. PubMed ID: 16872648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arabidopsis CYP72C1 is an atypical cytochrome P450 that inactivates brassinosteroids.
    Thornton LE; Rupasinghe SG; Peng H; Schuler MA; Neff MM
    Plant Mol Biol; 2010 Sep; 74(1-2):167-81. PubMed ID: 20669042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BAS1 and SOB7 act redundantly to modulate Arabidopsis photomorphogenesis via unique brassinosteroid inactivation mechanisms.
    Turk EM; Fujioka S; Seto H; Shimada Y; Takatsuto S; Yoshida S; Wang H; Torres QI; Ward JM; Murthy G; Zhang J; Walker JC; Neff MM
    Plant J; 2005 Apr; 42(1):23-34. PubMed ID: 15773851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blue light-promoted rice leaf bending and unrolling are due to up-regulated brassinosteroid biosynthesis genes accompanied by accumulation of castasterone.
    Asahina M; Tamaki Y; Sakamoto T; Shibata K; Nomura T; Yokota T
    Phytochemistry; 2014 Aug; 104():21-9. PubMed ID: 24856112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. OsGSR1 is involved in crosstalk between gibberellins and brassinosteroids in rice.
    Wang L; Wang Z; Xu Y; Joo SH; Kim SK; Xue Z; Xu Z; Wang Z; Chong K
    Plant J; 2009 Feb; 57(3):498-510. PubMed ID: 18980660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. shk1-D, a dwarf Arabidopsis mutant caused by activation of the CYP72C1 gene, has altered brassinosteroid levels.
    Takahashi N; Nakazawa M; Shibata K; Yokota T; Ishikawa A; Suzuki K; Kawashima M; Ichikawa T; Shimada H; Matsui M
    Plant J; 2005 Apr; 42(1):13-22. PubMed ID: 15773850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ATAF2 integrates Arabidopsis brassinosteroid inactivation and seedling photomorphogenesis.
    Peng H; Zhao J; Neff MM
    Development; 2015 Dec; 142(23):4129-38. PubMed ID: 26493403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic study identifies proteins involved in brassinosteroid regulation of rice growth.
    Wang F; Bai MY; Deng Z; Oses-Prieto JA; Burlingame AL; Lu T; Chong K; Wang ZY
    J Integr Plant Biol; 2010 Dec; 52(12):1075-85. PubMed ID: 21106006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450.
    Hong Z; Ueguchi-Tanaka M; Umemura K; Uozu S; Fujioka S; Takatsuto S; Yoshida S; Ashikari M; Kitano H; Matsuoka M
    Plant Cell; 2003 Dec; 15(12):2900-10. PubMed ID: 14615594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DWARF AND LOW-TILLERING, a new member of the GRAS family, plays positive roles in brassinosteroid signaling in rice.
    Tong H; Jin Y; Liu W; Li F; Fang J; Yin Y; Qian Q; Zhu L; Chu C
    Plant J; 2009 Jun; 58(5):803-16. PubMed ID: 19220793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arabidopsis CYP85A2, a cytochrome P450, mediates the Baeyer-Villiger oxidation of castasterone to brassinolide in brassinosteroid biosynthesis.
    Kim TW; Hwang JY; Kim YS; Joo SH; Chang SC; Lee JS; Takatsuto S; Kim SK
    Plant Cell; 2005 Aug; 17(8):2397-412. PubMed ID: 16024588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosynthetic relationship between C₂₈-brassinosteroids and C₂₉-brassinosteroids in rice (Oryza sativa) seedlings.
    Joo SH; Jang MS; Kim MK; Lee JE; Kim SK
    Phytochemistry; 2015 Mar; 111():84-90. PubMed ID: 25433632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Auxin signal transcription factor regulates expression of the brassinosteroid receptor gene in rice.
    Sakamoto T; Morinaka Y; Inukai Y; Kitano H; Fujioka S
    Plant J; 2013 Feb; 73(4):676-88. PubMed ID: 23146214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. OsBLE3, a brassinolide-enhanced gene, is involved in the growth of rice.
    Yang G; Nakamura H; Ichikawa H; Kitano H; Komatsu S
    Phytochemistry; 2006 Jul; 67(14):1442-54. PubMed ID: 16808934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rice CYP90D2 and CYP90D3 catalyze C-23 hydroxylation of brassinosteroids in vitro.
    Sakamoto T; Ohnishi T; Fujioka S; Watanabe B; Mizutani M
    Plant Physiol Biochem; 2012 Sep; 58():220-6. PubMed ID: 22846333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of transcript levels of the Arabidopsis cytochrome p450 genes involved in brassinosteroid biosynthesis.
    Bancoş S; Nomura T; Sato T; Molnár G; Bishop GJ; Koncz C; Yokota T; Nagy F; Szekeres M
    Plant Physiol; 2002 Sep; 130(1):504-13. PubMed ID: 12226529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice.
    Sakamoto T; Morinaka Y; Ohnishi T; Sunohara H; Fujioka S; Ueguchi-Tanaka M; Mizutani M; Sakata K; Takatsuto S; Yoshida S; Tanaka H; Kitano H; Matsuoka M
    Nat Biotechnol; 2006 Jan; 24(1):105-9. PubMed ID: 16369540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.