These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
893 related articles for article (PubMed ID: 21418358)
1. Role of camalexin, indole glucosinolates, and side chain modification of glucosinolate-derived isothiocyanates in defense of Arabidopsis against Sclerotinia sclerotiorum. Stotz HU; Sawada Y; Shimada Y; Hirai MY; Sasaki E; Krischke M; Brown PD; Saito K; Kamiya Y Plant J; 2011 Jul; 67(1):81-93. PubMed ID: 21418358 [TBL] [Abstract][Full Text] [Related]
2. The Arabidopsis P450 protein CYP82C2 modulates jasmonate-induced root growth inhibition, defense gene expression and indole glucosinolate biosynthesis. Liu F; Jiang H; Ye S; Chen WP; Liang W; Xu Y; Sun B; Sun J; Wang Q; Cohen JD; Li C Cell Res; 2010 May; 20(5):539-52. PubMed ID: 20354503 [TBL] [Abstract][Full Text] [Related]
3. Novel insights into the function of Arabidopsis R2R3-MYB transcription factors regulating aliphatic glucosinolate biosynthesis. Li Y; Sawada Y; Hirai A; Sato M; Kuwahara A; Yan X; Hirai MY Plant Cell Physiol; 2013 Aug; 54(8):1335-44. PubMed ID: 23792303 [TBL] [Abstract][Full Text] [Related]
4. Linking phytochrome to plant immunity: low red : far-red ratios increase Arabidopsis susceptibility to Botrytis cinerea by reducing the biosynthesis of indolic glucosinolates and camalexin. Cargnel MD; Demkura PV; Ballaré CL New Phytol; 2014 Oct; 204(2):342-54. PubMed ID: 25236170 [TBL] [Abstract][Full Text] [Related]
5. Towards global understanding of plant defence against aphids--timing and dynamics of early Arabidopsis defence responses to cabbage aphid (Brevicoryne brassicae) attack. Kuśnierczyk A; Winge P; Jørstad TS; Troczyńska J; Rossiter JT; Bones AM Plant Cell Environ; 2008 Aug; 31(8):1097-115. PubMed ID: 18433442 [TBL] [Abstract][Full Text] [Related]
6. A fast and precise method to identify indolic glucosinolates and camalexin in plants by combining mass spectrometric and biological information. Zandalinas SI; Vives-Peris V; Gómez-Cadenas A; Arbona V J Agric Food Chem; 2012 Sep; 60(35):8648-58. PubMed ID: 22870889 [TBL] [Abstract][Full Text] [Related]
7. Jasmonate-dependent and COI1-independent defense responses against Sclerotinia sclerotiorum in Arabidopsis thaliana: auxin is part of COI1-independent defense signaling. Stotz HU; Jikumaru Y; Shimada Y; Sasaki E; Stingl N; Mueller MJ; Kamiya Y Plant Cell Physiol; 2011 Nov; 52(11):1941-56. PubMed ID: 21937677 [TBL] [Abstract][Full Text] [Related]
8. Analyses of wrky18 wrky40 plants reveal critical roles of SA/EDS1 signaling and indole-glucosinolate biosynthesis for Golovinomyces orontii resistance and a loss-of resistance towards Pseudomonas syringae pv. tomato AvrRPS4. Schön M; Töller A; Diezel C; Roth C; Westphal L; Wiermer M; Somssich IE Mol Plant Microbe Interact; 2013 Jul; 26(7):758-67. PubMed ID: 23617415 [TBL] [Abstract][Full Text] [Related]
9. Overexpression of Three Glucosinolate Biosynthesis Genes in Brassica napus Identifies Enhanced Resistance to Sclerotinia sclerotiorum and Botrytis cinerea. Zhang Y; Huai D; Yang Q; Cheng Y; Ma M; Kliebenstein DJ; Zhou Y PLoS One; 2015; 10(10):e0140491. PubMed ID: 26465156 [TBL] [Abstract][Full Text] [Related]
11. Transcriptional responses of Arabidopsis thaliana ecotypes with different glucosinolate profiles after attack by polyphagous Myzus persicae and oligophagous Brevicoryne brassicae. Kusnierczyk A; Winge P; Midelfart H; Armbruster WS; Rossiter JT; Bones AM J Exp Bot; 2007; 58(10):2537-52. PubMed ID: 17545220 [TBL] [Abstract][Full Text] [Related]
12. Defense against Sclerotinia sclerotiorum in Arabidopsis is dependent on jasmonic acid, salicylic acid, and ethylene signaling. Guo X; Stotz HU Mol Plant Microbe Interact; 2007 Nov; 20(11):1384-95. PubMed ID: 17977150 [TBL] [Abstract][Full Text] [Related]
13. Auxin signaling and transport promote susceptibility to the root-infecting fungal pathogen Fusarium oxysporum in Arabidopsis. Kidd BN; Kadoo NY; Dombrecht B; Tekeoglu M; Gardiner DM; Thatcher LF; Aitken EA; Schenk PM; Manners JM; Kazan K Mol Plant Microbe Interact; 2011 Jun; 24(6):733-48. PubMed ID: 21281113 [TBL] [Abstract][Full Text] [Related]
14. Arabidopsis cytochrome P450 monooxygenase 71A13 catalyzes the conversion of indole-3-acetaldoxime in camalexin synthesis. Nafisi M; Goregaoker S; Botanga CJ; Glawischnig E; Olsen CE; Halkier BA; Glazebrook J Plant Cell; 2007 Jun; 19(6):2039-52. PubMed ID: 17573535 [TBL] [Abstract][Full Text] [Related]
15. The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in Arabidopsis thaliana. Gigolashvili T; Yatusevich R; Berger B; Müller C; Flügge UI Plant J; 2007 Jul; 51(2):247-61. PubMed ID: 17521412 [TBL] [Abstract][Full Text] [Related]
16. Characterization of seed-specific benzoyloxyglucosinolate mutations in Arabidopsis thaliana. Kliebenstein DJ; D'Auria JC; Behere AS; Kim JH; Gunderson KL; Breen JN; Lee G; Gershenzon J; Last RL; Jander G Plant J; 2007 Sep; 51(6):1062-76. PubMed ID: 17651367 [TBL] [Abstract][Full Text] [Related]
17. The effects of glucosinolates and their breakdown products on necrotrophic fungi. Buxdorf K; Yaffe H; Barda O; Levy M PLoS One; 2013; 8(8):e70771. PubMed ID: 23940639 [TBL] [Abstract][Full Text] [Related]