These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 21418382)

  • 21. Vascular endothelial growth factor mRNA and protein do not change in parallel during non-inflammatory skeletal muscle ischaemia in rat.
    Milkiewicz M; Hudlicka O; Shiner R; Egginton S; Brown MD
    J Physiol; 2006 Dec; 577(Pt 2):671-8. PubMed ID: 16990404
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Resistance vessel remodeling and reparative angiogenesis in the microcirculatory bed of long-term denervated skeletal muscles.
    Dedkov EI; Kostrominova TY; Borisov AB; Carlson BM
    Microvasc Res; 2002 Jan; 63(1):96-114. PubMed ID: 11749077
    [TBL] [Abstract][Full Text] [Related]  

  • 23. VEGF trap abolishes shear stress- and overload-dependent angiogenesis in skeletal muscle.
    Williams JL; Cartland D; Rudge JS; Egginton S
    Microcirculation; 2006 Sep; 13(6):499-509. PubMed ID: 16864416
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Detraining losses of skeletal muscle capillarization are associated with vascular endothelial growth factor protein expression in rats.
    Malek MH; Olfert IM; Esposito F
    Exp Physiol; 2010 Feb; 95(2):359-68. PubMed ID: 19880536
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The angiogenic response to skeletal muscle overload is not dependent on mast cell activation.
    Doyle JL; Haas TL
    Microcirculation; 2010 Oct; 17(7):548-56. PubMed ID: 21040120
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Advances and challenges in skeletal muscle angiogenesis.
    Olfert IM; Baum O; Hellsten Y; Egginton S
    Am J Physiol Heart Circ Physiol; 2016 Feb; 310(3):H326-36. PubMed ID: 26608338
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The ratio of VEGF/PEDF expression in bone marrow mesenchymal stem cells regulates neovascularization.
    Fan W; Crawford R; Xiao Y
    Differentiation; 2011 Mar; 81(3):181-91. PubMed ID: 21236558
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Association between shear stress, angiogenesis, and VEGF in skeletal muscles in vivo.
    Milkiewicz M; Brown MD; Egginton S; Hudlicka O
    Microcirculation; 2001 Aug; 8(4):229-41. PubMed ID: 11528531
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Anti-angiogenic function of tocotrienol.
    Miyazawa T; Shibata A; Nakagawa K; Tsuzuki T
    Asia Pac J Clin Nutr; 2008; 17 Suppl 1():253-6. PubMed ID: 18296349
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of endothelial cell apoptosis in regulation of skeletal muscle angiogenesis during high and low salt intake.
    de Resende MM; Amaral SL; Munzenmaier DH; Greene AS
    Physiol Genomics; 2006 Apr; 25(2):325-35. PubMed ID: 16464974
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adaptation of skeletal muscle microvasculature to increased or decreased blood flow: role of shear stress, nitric oxide and vascular endothelial growth factor.
    Hudlicka O; Brown MD
    J Vasc Res; 2009; 46(5):504-12. PubMed ID: 19556804
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Invited review: activity-induced angiogenesis.
    Egginton S
    Pflugers Arch; 2009 Mar; 457(5):963-77. PubMed ID: 18704490
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation of skeletal muscle capillary growth in exercise and disease.
    Haas TL; Nwadozi E
    Appl Physiol Nutr Metab; 2015 Dec; 40(12):1221-32. PubMed ID: 26554747
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Temporal response of positive and negative regulators in response to acute and chronic exercise training in mice.
    Olenich SA; Gutierrez-Reed N; Audet GN; Olfert IM
    J Physiol; 2013 Oct; 591(20):5157-69. PubMed ID: 23878369
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of Growth Factors in Modulation of the Microvasculature in Adult Skeletal Muscle.
    Smythe G
    Adv Exp Med Biol; 2016; 900():161-83. PubMed ID: 27003400
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Altitude, Exercise, and Skeletal Muscle Angio-Adaptive Responses to Hypoxia: A Complex Story.
    Lemieux P; Birot O
    Front Physiol; 2021; 12():735557. PubMed ID: 34552509
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The role of the microcirculation in muscle function and plasticity.
    Hendrickse P; Degens H
    J Muscle Res Cell Motil; 2019 Jun; 40(2):127-140. PubMed ID: 31165949
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The impact of aging and physical training on angiogenesis in the musculoskeletal system.
    Zmudzka M; Zoladz JA; Majerczak J
    PeerJ; 2022; 10():e14228. PubMed ID: 36348663
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Crosstalk between developing vasculature and optogenetically engineered skeletal muscle improves muscle contraction and angiogenesis.
    Osaki T; Sivathanu V; Kamm RD
    Biomaterials; 2018 Feb; 156():65-76. PubMed ID: 29190499
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exercise-induced skeletal muscle angiogenesis: impact of age, sex, angiocrines and cellular mediators.
    Ross M; Kargl CK; Ferguson R; Gavin TP; Hellsten Y
    Eur J Appl Physiol; 2023 Jul; 123(7):1415-1432. PubMed ID: 36715739
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.