These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 21418571)

  • 1. Designs for clinical trials with time-to-event outcomes based on stopping guidelines for lack of benefit.
    Royston P; Barthel FM; Parmar MK; Choodari-Oskooei B; Isham V
    Trials; 2011 Mar; 12():81. PubMed ID: 21418571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of lack-of-benefit stopping rules on treatment effect estimates of two-arm multi-stage (TAMS) trials with time to event outcome.
    Choodari-Oskooei B; Parmar MK; Royston P; Bowden J
    Trials; 2013 Jan; 14():23. PubMed ID: 23343147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A multi-arm multi-stage clinical trial design for binary outcomes with application to tuberculosis.
    Bratton DJ; Phillips PP; Parmar MK
    BMC Med Res Methodol; 2013 Nov; 13():139. PubMed ID: 24229079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexible trial design in practice - stopping arms for lack-of-benefit and adding research arms mid-trial in STAMPEDE: a multi-arm multi-stage randomized controlled trial.
    Sydes MR; Parmar MK; Mason MD; Clarke NW; Amos C; Anderson J; de Bono J; Dearnaley DP; Dwyer J; Green C; Jovic G; Ritchie AW; Russell JM; Sanders K; Thalmann G; James ND
    Trials; 2012 Sep; 13():168. PubMed ID: 22978443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel designs for multi-arm clinical trials with survival outcomes with an application in ovarian cancer.
    Royston P; Parmar MK; Qian W
    Stat Med; 2003 Jul; 22(14):2239-56. PubMed ID: 12854091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Type I error rates of multi-arm multi-stage clinical trials: strong control and impact of intermediate outcomes.
    Bratton DJ; Parmar MK; Phillips PP; Choodari-Oskooei B
    Trials; 2016 Jul; 17(1):309. PubMed ID: 27369182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Group sequential multi-arm multi-stage survival trial design with treatment selection.
    Wu J; Li Y
    J Biopharm Stat; 2024 Jul; 34(4):453-468. PubMed ID: 37455424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing the impact of efficacy stopping rules on the error rates under the multi-arm multi-stage framework.
    Blenkinsop A; Parmar MK; Choodari-Oskooei B
    Clin Trials; 2019 Apr; 16(2):132-141. PubMed ID: 30648428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Information time scales for interim analyses of randomized clinical trials.
    Freidlin B; Othus M; Korn EL
    Clin Trials; 2016 Aug; 13(4):391-9. PubMed ID: 27136947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Issues in applying multi-arm multi-stage methodology to a clinical trial in prostate cancer: the MRC STAMPEDE trial.
    Sydes MR; Parmar MK; James ND; Clarke NW; Dearnaley DP; Mason MD; Morgan RC; Sanders K; Royston P
    Trials; 2009 Jun; 10():39. PubMed ID: 19519885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-arm multi-stage (MAMS) randomised selection designs: impact of treatment selection rules on the operating characteristics.
    Choodari-Oskooei B; Blenkinsop A; Handley K; Pinkney T; Parmar MKB
    BMC Med Res Methodol; 2024 Jun; 24(1):124. PubMed ID: 38831421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bayesian optimal phase II clinical trial design with time-to-event endpoint.
    Zhou H; Chen C; Sun L; Yuan Y
    Pharm Stat; 2020 Nov; 19(6):776-786. PubMed ID: 32524679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adding new experimental arms to randomised clinical trials: Impact on error rates.
    Choodari-Oskooei B; Bratton DJ; Gannon MR; Meade AM; Sydes MR; Parmar MK
    Clin Trials; 2020 Jun; 17(3):273-284. PubMed ID: 32063029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive Designs with Discrete Test Statistics and Consideration of Overrunning.
    Schmidt R; Burkhardt B; Faldum A
    Methods Inf Med; 2015; 54(5):434-46. PubMed ID: 26429500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A method for utilizing co-primary efficacy outcome measures to screen regimens for activity in two-stage Phase II clinical trials.
    Sill MW; Rubinstein L; Litwin S; Yothers G
    Clin Trials; 2012 Aug; 9(4):385-95. PubMed ID: 22811448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Applying a phase II futility study design to therapeutic stroke trials.
    Palesch YY; Tilley BC; Sackett DL; Johnston KC; Woolson R
    Stroke; 2005 Nov; 36(11):2410-4. PubMed ID: 16224086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel adaptive design strategy increases the efficiency of clinical trials in secondary progressive multiple sclerosis.
    Chataway J; Nicholas R; Todd S; Miller DH; Parsons N; Valdés-Márquez E; Stallard N; Friede T
    Mult Scler; 2011 Jan; 17(1):81-8. PubMed ID: 20798135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation optimization for Bayesian multi-arm multi-stage clinical trial with binary endpoints.
    Yu Z; Ramakrishnan V; Meinzer C
    J Biopharm Stat; 2019; 29(2):306-317. PubMed ID: 30763151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-stage optimal designs based on exact variance for a single-arm trial with survival endpoints.
    Shan G
    J Biopharm Stat; 2020 Sep; 30(5):797-805. PubMed ID: 32129130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Upstrapping to determine futility: predicting future outcomes nonparametrically from past data.
    Wild JL; Ginde AA; Lindsell CJ; Kaizer AM
    Trials; 2024 May; 25(1):312. PubMed ID: 38725072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.