BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

919 related articles for article (PubMed ID: 21418747)

  • 1. Electrospinning and evaluation of PHBV-based tissue engineering scaffolds with different fibre diameters, surface topography and compositions.
    Tong HW; Wang M; Lu WW
    J Biomater Sci Polym Ed; 2012; 23(6):779-806. PubMed ID: 21418747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrospinning, characterization and in vitro biological evaluation of nanocomposite fibers containing carbonated hydroxyapatite nanoparticles.
    Tong HW; Wang M; Li ZY; Lu WW
    Biomed Mater; 2010 Oct; 5(5):054111. PubMed ID: 20876957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation.
    Sultana N; Wang M
    Biofabrication; 2012 Mar; 4(1):015003. PubMed ID: 22258057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poly-3-hydroxybutyrate-co-3-hydroxyvalerate containing scaffolds and their integration with osteoblasts as a model for bone tissue engineering.
    Zhang S; Prabhakaran MP; Qin X; Ramakrishna S
    J Biomater Appl; 2015 May; 29(10):1394-406. PubMed ID: 25592285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison study between electrospun polycaprolactone and piezoelectric poly(3-hydroxybutyrate-co-3-hydroxyvalerate) scaffolds for bone tissue engineering.
    Gorodzha SN; Muslimov AR; Syromotina DS; Timin AS; Tcvetkov NY; Lepik KV; Petrova AV; Surmeneva MA; Gorin DA; Sukhorukov GB; Surmenev RA
    Colloids Surf B Biointerfaces; 2017 Dec; 160():48-59. PubMed ID: 28917149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrospun poly(hydroxybutyrate-co-hydroxyvalerate) fibrous membranes consisting of parallel-aligned fibers or cross-aligned fibers: characterization and biological evaluation.
    Tong HW; Wang M; Lu WW
    J Biomater Sci Polym Ed; 2011; 22(18):2475-97. PubMed ID: 21144165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards functional 3D-stacked electrospun composite scaffolds of PHBV, silk fibroin and nanohydroxyapatite: Mechanical properties and surface osteogenic differentiation.
    Paşcu EI; Cahill PA; Stokes J; McGuinness GB
    J Biomater Appl; 2016 Apr; 30(9):1334-49. PubMed ID: 26767394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrospun composites of PHBV, silk fibroin and nano-hydroxyapatite for bone tissue engineering.
    Paşcu EI; Stokes J; McGuinness GB
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4905-16. PubMed ID: 24094204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biocomposite scaffolds for bone regeneration: Role of chitosan and hydroxyapatite within poly-3-hydroxybutyrate-co-3-hydroxyvalerate on mechanical properties and in vitro evaluation.
    Zhang S; Prabhakaran MP; Qin X; Ramakrishna S
    J Mech Behav Biomed Mater; 2015 Nov; 51():88-98. PubMed ID: 26232670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PHBV wet-spun scaffold coated with ELR-REDV improves vascularization for bone tissue engineering.
    Alagoz AS; Rodriguez-Cabello JC; Hasirci V
    Biomed Mater; 2018 Jul; 13(5):055010. PubMed ID: 29974870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering.
    Duan B; Wang M; Zhou WY; Cheung WL; Li ZY; Lu WW
    Acta Biomater; 2010 Dec; 6(12):4495-505. PubMed ID: 20601244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrospun polyurethane/hydroxyapatite bioactive scaffolds for bone tissue engineering: the role of solvent and hydroxyapatite particles.
    Tetteh G; Khan AS; Delaine-Smith RM; Reilly GC; Rehman IU
    J Mech Behav Biomed Mater; 2014 Nov; 39():95-110. PubMed ID: 25117379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Additive manufacturing of poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] scaffolds for engineered bone development.
    Mota C; Wang SY; Puppi D; Gazzarri M; Migone C; Chiellini F; Chen GQ; Chiellini E
    J Tissue Eng Regen Med; 2017 Jan; 11(1):175-186. PubMed ID: 24889107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diatom shell incorporated PHBV/PCL-pullulan co-electrospun scaffold for bone tissue engineering.
    Dalgic AD; Atila D; Karatas A; Tezcaner A; Keskin D
    Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():735-746. PubMed ID: 30948111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PHBV-TiO
    Braga NF; Vital DA; Guerrini LM; Lemes AP; Formaggio DMD; Tada DB; Arantes TM; Cristovan FH
    Biopolymers; 2018 May; 109(5):e23120. PubMed ID: 29704425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication and material properties of fibrous PHBV scaffolds depending on the cross-ply angle for tissue engineering.
    Kim YH; Min YK; Lee BT
    J Biomater Appl; 2012 Nov; 27(4):457-68. PubMed ID: 22071348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of surfactant types on the biocompatibility of electrospun HAp/PHBV composite nanofibers.
    Suslu A; Albayrak AZ; Urkmez AS; Bayir E; Cocen U
    J Mater Sci Mater Med; 2014 Dec; 25(12):2677-89. PubMed ID: 25091188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Piezoelectric 3-D Fibrous Poly(3-hydroxybutyrate)-Based Scaffolds Ultrasound-Mineralized with Calcium Carbonate for Bone Tissue Engineering: Inorganic Phase Formation, Osteoblast Cell Adhesion, and Proliferation.
    Chernozem RV; Surmeneva MA; Shkarina SN; Loza K; Epple M; Ulbricht M; Cecilia A; Krause B; Baumbach T; Abalymov AA; Parakhonskiy BV; Skirtach AG; Surmenev RA
    ACS Appl Mater Interfaces; 2019 May; 11(21):19522-19533. PubMed ID: 31058486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-based nanofibrous scaffolds to support functional esophageal epithelial cells towards engineering the esophagus.
    Kuppan P; Sethuraman S; Krishnan UM
    J Biomater Sci Polym Ed; 2014; 25(6):574-93. PubMed ID: 24502395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimized fabrication of Ca-P/PHBV nanocomposite scaffolds via selective laser sintering for bone tissue engineering.
    Duan B; Cheung WL; Wang M
    Biofabrication; 2011 Mar; 3(1):015001. PubMed ID: 21245522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 46.