BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 21419412)

  • 1. Inter-species investigation of the mechano-regulation of bone healing: comparison of secondary bone healing in sheep and rat.
    Checa S; Prendergast PJ; Duda GN
    J Biomech; 2011 Apr; 44(7):1237-45. PubMed ID: 21419412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of biophysical stimuli for mechano-regulation of tissue differentiation during fracture healing.
    Isaksson H; Wilson W; van Donkelaar CC; Huiskes R; Ito K
    J Biomech; 2006; 39(8):1507-16. PubMed ID: 15972212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechano-regulation of stem cell differentiation and tissue regeneration in osteochondral defects.
    Kelly DJ; Prendergast PJ
    J Biomech; 2005 Jul; 38(7):1413-22. PubMed ID: 15922752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A mechano-regulatory bone-healing model incorporating cell-phenotype specific activity.
    Isaksson H; van Donkelaar CC; Huiskes R; Ito K
    J Theor Biol; 2008 May; 252(2):230-46. PubMed ID: 18353374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of fracture gap size on the pattern of long bone healing: a computational study.
    Gómez-Benito MJ; García-Aznar JM; Kuiper JH; Doblaré M
    J Theor Biol; 2005 Jul; 235(1):105-19. PubMed ID: 15833317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined in vivo/in silico study of mechanobiological mechanisms during endochondral ossification in bone healing.
    Witt F; Petersen A; Seidel R; Vetter A; Weinkamer R; Duda GN
    Ann Biomed Eng; 2011 Oct; 39(10):2531-41. PubMed ID: 21692004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The spatio-temporal arrangement of different tissues during bone healing as a result of simple mechanobiological rules.
    Vetter A; Witt F; Sander O; Duda GN; Weinkamer R
    Biomech Model Mechanobiol; 2012 Jan; 11(1-2):147-60. PubMed ID: 21431883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The mechanical heterogeneity of the hard callus influences local tissue strains during bone healing: a finite element study based on sheep experiments.
    Vetter A; Liu Y; Witt F; Manjubala I; Sander O; Epari DR; Fratzl P; Duda GN; Weinkamer R
    J Biomech; 2011 Feb; 44(3):517-23. PubMed ID: 20965507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of high-frequency cyclical stimulation on the bone fracture-healing process: mathematical and experimental models.
    Gómez-Benito MJ; González-Torres LA; Reina-Romo E; Grasa J; Seral B; García-Aznar JM
    Philos Trans A Math Phys Eng Sci; 2011 Nov; 369(1954):4278-94. PubMed ID: 21969676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone regeneration during distraction osteogenesis: mechano-regulation by shear strain and fluid velocity.
    Isaksson H; Comas O; van Donkelaar CC; Mediavilla J; Wilson W; Huiskes R; Ito K
    J Biomech; 2007; 40(9):2002-11. PubMed ID: 17112532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical conditions in the initial phase of bone healing.
    Epari DR; Taylor WR; Heller MO; Duda GN
    Clin Biomech (Bristol, Avon); 2006 Jul; 21(6):646-55. PubMed ID: 16513229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of residual stresses due to bone callus growth: a computational study.
    González-Torres LA; Gómez-Benito MJ; García-Aznar JM
    J Biomech; 2011 Jun; 44(9):1782-7. PubMed ID: 21550610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational simulation of fracture healing: influence of interfragmentary movement on the callus growth.
    García-Aznar JM; Kuiper JH; Gómez-Benito MJ; Doblaré M; Richardson JB
    J Biomech; 2007; 40(7):1467-76. PubMed ID: 16930609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variability observed in mechano-regulated in vivo tissue differentiation can be explained by variation in cell mechano-sensitivity.
    Khayyeri H; Checa S; Tägil M; Aspenberg P; Prendergast PJ
    J Biomech; 2011 Apr; 44(6):1051-8. PubMed ID: 21377680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporal tissue patterns in bone healing of sheep.
    Vetter A; Epari DR; Seidel R; Schell H; Fratzl P; Duda GN; Weinkamer R
    J Orthop Res; 2010 Nov; 28(11):1440-7. PubMed ID: 20872579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensitivity of tissue differentiation and bone healing predictions to tissue properties.
    Isaksson H; van Donkelaar CC; Ito K
    J Biomech; 2009 Mar; 42(5):555-64. PubMed ID: 19233361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Digital image correlation: a technique for determining local mechanical conditions within early bone callus.
    Thompson MS; Schell H; Lienau J; Duda GN
    Med Eng Phys; 2007 Sep; 29(7):820-3. PubMed ID: 17045512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial and temporal variations of mechanical properties and mineral content of the external callus during bone healing.
    Manjubala I; Liu Y; Epari DR; Roschger P; Schell H; Fratzl P; Duda GN
    Bone; 2009 Aug; 45(2):185-92. PubMed ID: 19414072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determining the most important cellular characteristics for fracture healing using design of experiments methods.
    Isaksson H; van Donkelaar CC; Huiskes R; Yao J; Ito K
    J Theor Biol; 2008 Nov; 255(1):26-39. PubMed ID: 18723028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.