These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 21419618)

  • 1. Thermo-responsive molecular switches for ATP using hairpin DNA aptamers.
    Goda T; Miyahara Y
    Biosens Bioelectron; 2011 May; 26(9):3949-52. PubMed ID: 21419618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A hairpin DNA aptamer coupled with groove binders as a smart switch for a field-effect transistor biosensor.
    Goda T; Miyahara Y
    Biosens Bioelectron; 2012 Feb; 32(1):244-9. PubMed ID: 22221798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybridization chain reaction-based colorimetric aptasensor of adenosine 5'-triphosphate on unmodified gold nanoparticles and two label-free hairpin probes.
    Gao Z; Qiu Z; Lu M; Shu J; Tang D
    Biosens Bioelectron; 2017 Mar; 89(Pt 2):1006-1012. PubMed ID: 27825528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ amplified electrochemical aptasensing for sensitive detection of adenosine triphosphate by coupling target-induced hybridization chain reaction with the assembly of silver nanotags.
    Zhou Q; Lin Y; Lin Y; Wei Q; Chen G; Tang D
    Talanta; 2016; 146():23-8. PubMed ID: 26695229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A target-responsive electrochemical aptamer switch (TREAS) for reagentless detection of nanomolar ATP.
    Zuo X; Song S; Zhang J; Pan D; Wang L; Fan C
    J Am Chem Soc; 2007 Feb; 129(5):1042-3. PubMed ID: 17263380
    [No Abstract]   [Full Text] [Related]  

  • 6. Competitive aptamer bioassay for selective detection of adenosine triphosphate based on metal-paired molecular conformational switch and fluorescent gold nanoclusters.
    Liu JM; Yan XP
    Biosens Bioelectron; 2012; 36(1):135-41. PubMed ID: 22560440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A sensitive quartz crystal microbalance assay of adenosine triphosphate via DNAzyme-activated and aptamer-based target-triggering circular amplification.
    Song W; Zhu Z; Mao Y; Zhang S
    Biosens Bioelectron; 2014 Mar; 53():288-94. PubMed ID: 24161526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoplasmonic detection of adenosine triphosphate by aptamer regulated self-catalytic growth of single gold nanoparticles.
    Liu Q; Jing C; Zheng X; Gu Z; Li D; Li DW; Huang Q; Long YT; Fan C
    Chem Commun (Camb); 2012 Oct; 48(77):9574-6. PubMed ID: 22871726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational dynamics of an ATP-binding DNA aptamer: a single-molecule study.
    Xia T; Yuan J; Fang X
    J Phys Chem B; 2013 Dec; 117(48):14994-5003. PubMed ID: 24245799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aptamer/target binding-induced triple helix forming for signal-on electrochemical biosensing.
    Mao Y; Liu J; He D; He X; Wang K; Shi H; Wen L
    Talanta; 2015 Oct; 143():381-387. PubMed ID: 26078174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A sensitive aptasensor for colorimetric detection of adenosine triphosphate based on the protective effect of ATP-aptamer complexes on unmodified gold nanoparticles.
    Huo Y; Qi L; Lv XJ; Lai T; Zhang J; Zhang ZQ
    Biosens Bioelectron; 2016 Apr; 78():315-320. PubMed ID: 26638040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox-Switchable Binding Properties of the ATP-Aptamer.
    Biniuri Y; Luo GF; Fadeev M; Wulf V; Willner I
    J Am Chem Soc; 2019 Oct; 141(39):15567-15576. PubMed ID: 31478647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Responsive hairpin DNA aptamer switch to program the strand displacement reaction for the enhanced electrochemical assay of ATP.
    Wang L; Fang L; Liu S
    Analyst; 2015 Sep; 140(17):5877-80. PubMed ID: 26215159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Target-induced structure switching of hairpin aptamers for label-free and sensitive fluorescent detection of ATP via exonuclease-catalyzed target recycling amplification.
    Xu Y; Xu J; Xiang Y; Yuan R; Chai Y
    Biosens Bioelectron; 2014 Jan; 51():293-6. PubMed ID: 23974161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing the response rate of strand displacement-based electrochemical aptamer sensors using bivalent binding aptamer-cDNA probes.
    Zhang Z; Tao C; Yin J; Wang Y; Li Y
    Biosens Bioelectron; 2018 Apr; 103():39-44. PubMed ID: 29278811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA aptamer folding on gold nanoparticles: from colloid chemistry to biosensors.
    Zhao W; Chiuman W; Lam JC; McManus SA; Chen W; Cui Y; Pelton R; Brook MA; Li Y
    J Am Chem Soc; 2008 Mar; 130(11):3610-8. PubMed ID: 18293985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Label-free electrochemical detection for aptamer-based array electrodes.
    Xu D; Xu D; Yu X; Liu Z; He W; Ma Z
    Anal Chem; 2005 Aug; 77(16):5107-13. PubMed ID: 16097746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multifunctional label-free electrochemical biosensor based on an integrated aptamer.
    Du Y; Li B; Wei H; Wang Y; Wang E
    Anal Chem; 2008 Jul; 80(13):5110-7. PubMed ID: 18522435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical aptamer sensor for small molecule assays.
    Liu X; Li W; Xu X; Zhou J; Nie Z
    Methods Mol Biol; 2012; 800():119-32. PubMed ID: 21964786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical aptamer-based nanosensor fabricated on single Au nanowire electrodes for adenosine triphosphate assay.
    Wang D; Xiao X; Xu S; Liu Y; Li Y
    Biosens Bioelectron; 2018 Jan; 99():431-437. PubMed ID: 28810234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.