BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 21419884)

  • 1. Understanding in vivo response and mechanical property variation in MgO, SrO and SiO₂ doped β-TCP.
    Bose S; Tarafder S; Banerjee SS; Davies NM; Bandyopadhyay A
    Bone; 2011 Jun; 48(6):1282-90. PubMed ID: 21419884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding the influence of MgO and SrO binary doping on the mechanical and biological properties of beta-TCP ceramics.
    Banerjee SS; Tarafder S; Davies NM; Bandyopadhyay A; Bose S
    Acta Biomater; 2010 Oct; 6(10):4167-74. PubMed ID: 20493283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ZnO, SiO2, and SrO doping in resorbable tricalcium phosphates: Influence on strength degradation, mechanical properties, and in vitro bone-cell material interactions.
    Bandyopadhyay A; Petersen J; Fielding G; Banerjee S; Bose S
    J Biomed Mater Res B Appl Biomater; 2012 Nov; 100(8):2203-12. PubMed ID: 22997062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SrO- and MgO-doped microwave sintered 3D printed tricalcium phosphate scaffolds: mechanical properties and in vivo osteogenesis in a rabbit model.
    Tarafder S; Dernell WS; Bandyopadhyay A; Bose S
    J Biomed Mater Res B Appl Biomater; 2015 Apr; 103(3):679-90. PubMed ID: 25045131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nano SiO2 and MgO improve the properties of porous β-TCP scaffolds via advanced manufacturing technology.
    Gao C; Wei P; Feng P; Xiao T; Shuai C; Peng S
    Int J Mol Sci; 2015 Mar; 16(4):6818-30. PubMed ID: 25815597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D printed tricalcium phosphate scaffolds: Effect of SrO and MgO doping on
    Tarafder S; Davies NM; Bandyopadhyay A; Bose S
    Biomater Sci; 2013 Dec; 1(12):1250-1259. PubMed ID: 24729867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of MgO, ZnO, SrO, and SiO
    Ke D; Tarafder S; Vahabzadeh S; Bose S
    Mater Sci Eng C Mater Biol Appl; 2019 Mar; 96():10-19. PubMed ID: 30606515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnesia-doped HA/beta-TCP ceramics and evaluation of their biocompatibility.
    Ryu HS; Hong KS; Lee JK; Kim DJ; Lee JH; Chang BS; Lee DH; Lee CK; Chung SS
    Biomaterials; 2004 Feb; 25(3):393-401. PubMed ID: 14585687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of magnesium oxide and strontium oxide as modifiers in silicate-based bioactive glasses: Effects on thermal behaviour, mechanical properties and in-vitro bioactivity.
    Bellucci D; Sola A; Salvatori R; Anesi A; Chiarini L; Cannillo V
    Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():566-575. PubMed ID: 28024623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of TiO2 and Ag2O addition on tricalcium phosphate ceramics.
    Seeley Z; Bandyopadhyay A; Bose S
    J Biomed Mater Res A; 2007 Jul; 82(1):113-21. PubMed ID: 17269142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of beta-tricalcium phosphate/sol-gel derived bioactive glass composites: physical, mechanical, and in vitro biological evaluations.
    Hesaraki S; Safari M; Shokrgozar MA
    J Biomed Mater Res B Appl Biomater; 2009 Oct; 91(1):459-69. PubMed ID: 19507141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Doped tricalcium phosphate bone tissue engineering scaffolds using sucrose as template and microwave sintering: enhancement of mechanical and biological properties.
    Ke D; Bose S
    Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():398-404. PubMed ID: 28576001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo biocompatibility of SrO and MgO doped brushite cements.
    Nandi SK; Roy M; Bandyopadhyay A; Bose S
    J Biomed Mater Res B Appl Biomater; 2023 Mar; 111(3):599-609. PubMed ID: 36254886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Mg and Si co-substitution on microstructure and strength of tricalcium phosphate ceramics.
    García-Páez IH; Carrodeguas RG; De Aza AH; Baudín C; Pena P
    J Mech Behav Biomed Mater; 2014 Feb; 30():1-15. PubMed ID: 24216308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical properties of bovine hydroxyapatite (BHA) composites doped with SiO2, MgO, Al2O3, and ZrO2.
    Oktar FN; Agathopoulos S; Ozyegin LS; Gunduz O; Demirkol N; Bozkurt Y; Salman S
    J Mater Sci Mater Med; 2007 Nov; 18(11):2137-43. PubMed ID: 17619958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of silica and zinc oxide doping on mechanical and biological properties of 3D printed tricalcium phosphate tissue engineering scaffolds.
    Fielding GA; Bandyopadhyay A; Bose S
    Dent Mater; 2012 Feb; 28(2):113-22. PubMed ID: 22047943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Doped tricalcium phosphate scaffolds by thermal decomposition of naphthalene: Mechanical properties and in vivo osteogenesis in a rabbit femur model.
    Ke D; Dernell W; Bandyopadhyay A; Bose S
    J Biomed Mater Res B Appl Biomater; 2015 Nov; 103(8):1549-59. PubMed ID: 25504889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of SiO2, SrO, MgO, and ZnO dopants in tricalcium phosphates on osteoblastic Runx2 expression.
    Fielding GA; Smoot W; Bose S
    J Biomed Mater Res A; 2014 Jul; 102(7):2417-26. PubMed ID: 23946240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tailoring the mechanical property and cell-biological response of β-tricalcium phosphate composite bioceramics by SrO-P
    He F; Lu T; Tian Y; Li X; Zuo F; Shi X; Ye J
    J Mech Behav Biomed Mater; 2018 Oct; 86():215-223. PubMed ID: 29986296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of oxide-based sintering additives on densification and mechanical behavior of tricalcium phosphate (TCP).
    Bhatt HA; Kalita SJ
    J Mater Sci Mater Med; 2007 May; 18(5):883-93. PubMed ID: 17211718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.