These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 21420141)

  • 21. Catalytic and non-catalytic wet air oxidation of sodium dodecylbenzene sulfonate: kinetics and biodegradability enhancement.
    Suárez-Ojeda ME; Kim J; Carrera J; Metcalfe IS; Font J
    J Hazard Mater; 2007 Jun; 144(3):655-62. PubMed ID: 17363148
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Wet oxidation of domestic sludge and process integration: the Mineralis process.
    Lendormi T; Prévot C; Doppenberg F; Spérandio M; Debellefontaine H
    Water Sci Technol; 2001; 44(10):163-9. PubMed ID: 11794648
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Wet oxidation of salicylic acid solutions.
    Collado S; Garrido L; Laca A; Diaz M
    Environ Sci Technol; 2010 Nov; 44(22):8629-35. PubMed ID: 20979409
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development and optimization of dark Fenton oxidation for the treatment of textile wastewaters with high organic load.
    Papadopoulos AE; Fatta D; Loizidou M
    J Hazard Mater; 2007 Jul; 146(3):558-63. PubMed ID: 17573189
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of operating conditions on aquatic worms eating waste sludge.
    Hendrickx TL; Temmink H; Elissen HJ; Buisman CJ
    Water Res; 2009 Mar; 43(4):943-50. PubMed ID: 19081597
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Combustion of isopropyl alcohol using a green manufactured CuFe2O4.
    Tu YJ; Chang CK; You CF
    J Hazard Mater; 2012 Aug; 229-230():258-64. PubMed ID: 22727486
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of operating conditions on the ammonia electro-oxidation rate in wastewaters from power plants (ELONITA technique).
    Vanlangendonck Y; Corbisier D; Van Lierde A
    Water Res; 2005 Aug; 39(13):3028-34. PubMed ID: 16000211
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On-line control of a SBR system for nitrogen removal from industrial wastewater.
    Andreottola G; Foladori P; Ragazzi M
    Water Sci Technol; 2001; 43(3):93-100. PubMed ID: 11381938
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Wet peroxide oxidation of chlorophenols.
    García-Molina V; López-Arias M; Florczyk M; Chamarro E; Esplugas S
    Water Res; 2005 Mar; 39(5):795-802. PubMed ID: 15743624
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Wet air oxidation of table olive processing wastewater: determination of key operating parameters by factorial design.
    Katsoni A; Frontistis Z; Xekoukoulotakis NP; Diamadopoulos E; Mantzavinos D
    Water Res; 2008 Aug; 42(14):3591-600. PubMed ID: 18649915
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nitrite accumulation in the treatment of wastewaters with high ammonia concentration.
    Yang W; Vollertsen J; Hvitved-Jacobsen T
    Water Sci Technol; 2003; 48(3):135-41. PubMed ID: 14518865
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Anodic oxidation of 1,4-dioxane on boron-doped diamond electrodes for wastewater treatment.
    Choi JY; Lee YJ; Shin J; Yang JW
    J Hazard Mater; 2010 Jul; 179(1-3):762-8. PubMed ID: 20381243
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Technological transfer to demonstrative scale of sequencing batch biofilter granular reactor (SBBGR) technology for municipal and industrial wastewater treatment.
    Di Iaconi C; De Sanctis M; Rossetti S; Ramadori R
    Water Sci Technol; 2008; 58(2):367-72. PubMed ID: 18701787
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Direct energy recovery from primary and secondary sludges by supercritical water oxidation.
    Svanström M; Modell M; Tester J
    Water Sci Technol; 2004; 49(10):201-8. PubMed ID: 15259956
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Supercritical gasification for the treatment of o-cresol wastewater.
    Wei CH; Hu CS; Wu CF; Yan B
    J Environ Sci (China); 2006; 18(4):644-9. PubMed ID: 17078539
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Catalytic wet hydrogen peroxide oxidation of a petrochemical wastewater.
    Pariente MI; Melero JA; Martínez F; Botas JA; Gallego AI
    Water Sci Technol; 2010; 61(7):1829-36. PubMed ID: 20371942
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Decomposition of 1,4-dioxane by photo-Fenton oxidation coupled with activated sludge in a polyester manufacturing process.
    So MH; Han JS; Han TH; Seo JW; Kim CG
    Water Sci Technol; 2009; 59(5):1003-9. PubMed ID: 19273900
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Selection of hydrothermal pre-treatment conditions of waste sludge destruction using multicriteria decision-making.
    Al-Shiekh Khalil W; Shanableh A; Rigby P; Kokot S
    J Environ Manage; 2005 Apr; 75(1):53-64. PubMed ID: 15748803
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Trihalomethane occurrence in chlorinated reclaimed water at full-scale wastewater treatment plants in NE Spain.
    Matamoros V; Mujeriego R; Bayona JM
    Water Res; 2007 Aug; 41(15):3337-44. PubMed ID: 17585988
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Anaerobic treatment for C and S removal in "zero-discharge" paper mills: effects of process design on S removal efficiencies.
    van Lier JB; Lens PN; Pol LW
    Water Sci Technol; 2001; 44(4):189-95. PubMed ID: 11575084
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.