These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1056 related articles for article (PubMed ID: 21420713)
1. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution. Yamaguchi N; Nakamura T; Dong D; Takahashi Y; Amachi S; Makino T Chemosphere; 2011 May; 83(7):925-32. PubMed ID: 21420713 [TBL] [Abstract][Full Text] [Related]
2. Temperature dependence and coupling of iron and arsenic reduction and release during flooding of a contaminated soil. Weber FA; Hofacker AF; Voegelin A; Kretzschmar R Environ Sci Technol; 2010 Jan; 44(1):116-22. PubMed ID: 20039741 [TBL] [Abstract][Full Text] [Related]
3. Is trace metal release in wetland soils controlled by organic matter mobility or Fe-oxyhydroxides reduction? Grybos M; Davranche M; Gruau G; Petitjean P J Colloid Interface Sci; 2007 Oct; 314(2):490-501. PubMed ID: 17692327 [TBL] [Abstract][Full Text] [Related]
4. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China. Xie X; Ellis A; Wang Y; Xie Z; Duan M; Su C Sci Total Environ; 2009 Jun; 407(12):3823-35. PubMed ID: 19344934 [TBL] [Abstract][Full Text] [Related]
5. Effects of incubation on solubility and mobility of trace metals in two contaminated soils. Ma LQ; Dong Y Environ Pollut; 2004 Aug; 130(3):301-7. PubMed ID: 15182963 [TBL] [Abstract][Full Text] [Related]
6. Antimony (Sb) and arsenic (As) in Sb mining impacted paddy soil from Xikuangshan, China: differences in mechanisms controlling soil sequestration and uptake in rice. Okkenhaug G; Zhu YG; He J; Li X; Luo L; Mulder J Environ Sci Technol; 2012 Mar; 46(6):3155-62. PubMed ID: 22309044 [TBL] [Abstract][Full Text] [Related]
7. Speciation change and redistribution of arsenic in soil under anaerobic microbial activities. Xu L; Wu X; Wang S; Yuan Z; Xiao F; Yang M; Jia Y J Hazard Mater; 2016 Jan; 301():538-46. PubMed ID: 26434533 [TBL] [Abstract][Full Text] [Related]
8. Potential for microbially mediated redox transformations and mobilization of arsenic in uncontaminated soils. Yamamura S; Watanabe M; Yamamoto N; Sei K; Ike M Chemosphere; 2009 Sep; 77(2):169-74. PubMed ID: 19716583 [TBL] [Abstract][Full Text] [Related]
9. Nitrate reduced arsenic redox transformation and transfer in flooded paddy soil-rice system. Lin Z; Wang X; Wu X; Liu D; Yin Y; Zhang Y; Xiao S; Xing B Environ Pollut; 2018 Dec; 243(Pt B):1015-1025. PubMed ID: 30248601 [TBL] [Abstract][Full Text] [Related]
10. Arsenic mobilization in a seawater inundated acid sulfate soil. Johnston SG; Keene AF; Burton ED; Bush RT; Sullivan LA; McElnea A; Ahern CR; Smith CD; Powell B; Hocking RK Environ Sci Technol; 2010 Mar; 44(6):1968-73. PubMed ID: 20155899 [TBL] [Abstract][Full Text] [Related]
11. Arsenic speciation and mobilization in CCA-contaminated soils: influence of organic matter content. Dobran S; Zagury GJ Sci Total Environ; 2006 Jul; 364(1-3):239-50. PubMed ID: 16055167 [TBL] [Abstract][Full Text] [Related]
12. Biochar increases arsenic release from an anaerobic paddy soil due to enhanced microbial reduction of iron and arsenic. Wang N; Xue XM; Juhasz AL; Chang ZZ; Li HB Environ Pollut; 2017 Jan; 220(Pt A):514-522. PubMed ID: 27720546 [TBL] [Abstract][Full Text] [Related]
13. [Influencing Mechanism of Eh, pH and Iron on the Release of Arsenic in Paddy Soil]. Zhong SX; Yin GC; Chen ZL; Lin QT; Huang RL; Liu DL; Peng HL; Huang L; Wang X; Jiang XL Huan Jing Ke Xue; 2017 Jun; 38(6):2530-2537. PubMed ID: 29965374 [TBL] [Abstract][Full Text] [Related]
14. Arsenic dynamics in porewater of an intermittently irrigated paddy field in Bangladesh. Roberts LC; Hug SJ; Voegelin A; Dittmar J; Kretzschmar R; Wehrli B; Saha GC; Badruzzaman AB; Ali MA Environ Sci Technol; 2011 Feb; 45(3):971-6. PubMed ID: 21166387 [TBL] [Abstract][Full Text] [Related]
15. Redox changes in speciation and solubility of arsenic in paddy soils as affected by sulfur concentrations. Hashimoto Y; Kanke Y Environ Pollut; 2018 Jul; 238():617-623. PubMed ID: 29609173 [TBL] [Abstract][Full Text] [Related]
16. Speciation and transport of arsenic in an acid sulfate soil-dominated catchment, eastern Australia. Kinsela AS; Collins RN; Waite TD Chemosphere; 2011 Feb; 82(6):879-87. PubMed ID: 21094969 [TBL] [Abstract][Full Text] [Related]
17. [Effect of Iron on the Release of Arsenic in Flooded Paddy Soils]. Wang X; Zhong SX; Chen ZL; He HF; Dong JH; Chen XL Huan Jing Ke Xue; 2018 Jun; 39(6):2911-2918. PubMed ID: 29965650 [TBL] [Abstract][Full Text] [Related]
18. Mineralogical and geochemical controls of arsenic speciation and mobility under different redox conditions in soil, sediment and water at the Mokrsko-West gold deposit, Czech Republic. Drahota P; Rohovec J; Filippi M; Mihaljevic M; Rychlovský P; Cervený V; Pertold Z Sci Total Environ; 2009 May; 407(10):3372-84. PubMed ID: 19217143 [TBL] [Abstract][Full Text] [Related]
19. Effects of rice straw ash amendment on Cu solubility and distribution in flooded rice paddy soils. Huang JH; Hsu SH; Wang SL J Hazard Mater; 2011 Feb; 186(2-3):1801-7. PubMed ID: 21232857 [TBL] [Abstract][Full Text] [Related]
20. Cadmium solubility in paddy soils: effects of soil oxidation, metal sulfides and competitive ions. de Livera J; McLaughlin MJ; Hettiarachchi GM; Kirby JK; Beak DG Sci Total Environ; 2011 Mar; 409(8):1489-97. PubMed ID: 21277005 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]