These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 21421006)

  • 1. The behavioral receptive field underlying motion integration for primate tracking eye movements.
    Masson GS; Perrinet LU
    Neurosci Biobehav Rev; 2012 Jan; 36(1):1-25. PubMed ID: 21421006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Behavioral receptive field for ocular following in humans: dynamics of spatial summation and center-surround interactions.
    Barthélemy FV; Vanzetta I; Masson GS
    J Neurophysiol; 2006 Jun; 95(6):3712-26. PubMed ID: 16554515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of directional selectivity in MT receptive field centre and surround.
    Perge JA; Borghuis BG; Bours RJ; Lankheet MJ; van Wezel RJ
    Eur J Neurosci; 2005 Oct; 22(8):2049-58. PubMed ID: 16262642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuronal code of spatial visual information in the caudate nucleus.
    Gombköto P; Rokszin A; Berényi A; Braunitzer G; Utassy G; Benedek G; Nagy A
    Neuroscience; 2011 May; 182():225-31. PubMed ID: 21376107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatiotopic selectivity of BOLD responses to visual motion in human area MT.
    d'Avossa G; Tosetti M; Crespi S; Biagi L; Burr DC; Morrone MC
    Nat Neurosci; 2007 Feb; 10(2):249-55. PubMed ID: 17195842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From 1D to 2D via 3D: dynamics of surface motion segmentation for ocular tracking in primates.
    Masson GS
    J Physiol Paris; 2004; 98(1-3):35-52. PubMed ID: 15477021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A view model which accounts for the spatial fields of hippocampal primate spatial view cells and rat place cells.
    de Araujo IE; Rolls ET; Stringer SM
    Hippocampus; 2001; 11(6):699-706. PubMed ID: 11811664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal dynamics of 2D motion integration for ocular following in macaque monkeys.
    Barthélemy FV; Fleuriet J; Masson GS
    J Neurophysiol; 2010 Mar; 103(3):1275-82. PubMed ID: 20032230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatiotemporal elements of macaque v1 receptive fields.
    Rust NC; Schwartz O; Movshon JA; Simoncelli EP
    Neuron; 2005 Jun; 46(6):945-56. PubMed ID: 15953422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Properties of cerebellar fastigial neurons during translation, rotation, and eye movements.
    Shaikh AG; Ghasia FF; Dickman JD; Angelaki DE
    J Neurophysiol; 2005 Feb; 93(2):853-63. PubMed ID: 15371498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-motion-induced eye movements: effects on visual acuity and navigation.
    Angelaki DE; Hess BJ
    Nat Rev Neurosci; 2005 Dec; 6(12):966-76. PubMed ID: 16340956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eye movements in response to dichoptic motion: evidence for a parallel-hierarchical structure of visual motion processing in primates.
    Hayashi R; Miura K; Tabata H; Kawano K
    J Neurophysiol; 2008 May; 99(5):2329-46. PubMed ID: 18272870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling the dynamics of motion integration with a new luminance-gated diffusion mechanism.
    Tlapale E; Masson GS; Kornprobst P
    Vision Res; 2010 Aug; 50(17):1676-92. PubMed ID: 20553965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential dependency on motion coherence in subregions of the human MT+ complex.
    Becker HG; Erb M; Haarmeier T
    Eur J Neurosci; 2008 Oct; 28(8):1674-85. PubMed ID: 18973585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational mechanisms for optic flow analysis in primate cortex.
    Lappe M
    Int Rev Neurobiol; 2000; 44():235-68. PubMed ID: 10605649
    [No Abstract]   [Full Text] [Related]  

  • 16. Visual receptive field properties of excitatory neurons in the substantia nigra.
    Nagy A; Eördegh G; Norita M; Benedek G
    Neuroscience; 2005; 130(2):513-8. PubMed ID: 15664707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring and tracking eye movements of a behaving archer fish by real-time stereo vision.
    Ben-Simon A; Ben-Shahar O; Segev R
    J Neurosci Methods; 2009 Nov; 184(2):235-43. PubMed ID: 19698749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling spatial integration in the ocular following response using a probabilistic framework.
    Perrinet LU; Masson GS
    J Physiol Paris; 2007; 101(1-3):46-55. PubMed ID: 18042358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. V4 receptive field dynamics as predicted by a systems-level model of visual attention using feedback from the frontal eye field.
    Hamker FH; Zirnsak M
    Neural Netw; 2006 Nov; 19(9):1371-82. PubMed ID: 17014990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuronal correlates of perceptual stability during eye movements.
    Dicke PW; Chakraborty S; Thier P
    Eur J Neurosci; 2008 Feb; 27(4):991-1002. PubMed ID: 18333969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.