These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 21421017)

  • 1. Dietary acrylamide does not increase colon aberrant crypt foci formation in male F344 rats.
    Raju J; Sondagar C; Roberts J; Aziz SA; Caldwell D; Vavasour E; Mehta R
    Food Chem Toxicol; 2011 Jun; 49(6):1373-80. PubMed ID: 21421017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of experimental colon tumorigenesis by types and amounts of dietary fatty acids.
    Rao CV; Hirose Y; Indranie C; Reddy BS
    Cancer Res; 2001 Mar; 61(5):1927-33. PubMed ID: 11280748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of amount and types of dietary fat on intestinal bacterial 7 alpha-dehydroxylase and phosphatidylinositol-specific phospholipase C and colonic mucosal diacylglycerol kinase and PKC activities during stages of colon tumor promotion.
    Reddy BS; Simi B; Patel N; Aliaga C; Rao CV
    Cancer Res; 1996 May; 56(10):2314-20. PubMed ID: 8625306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Varying effect of dietary lipids and azoxymethane on early stages of colon carcinogenesis: enumeration of aberrant crypt foci and proliferative indices.
    Bird RP; Lafave LM
    Cancer Detect Prev; 1995; 19(4):308-15. PubMed ID: 7553672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of colonic aberrant crypt foci and proliferative indexes in colon and prostate glands of rats by vitamin E.
    Yao K; Latta M; Bird RP
    Nutr Cancer; 1996; 26(1):99-109. PubMed ID: 8844726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diverse effect of fish oil on the growth of aberrant crypt foci and tumor multiplicity in F344 rats.
    Good CK; Lasko CM; Adam J; Bird RP
    Nutr Cancer; 1998; 31(3):204-11. PubMed ID: 9795973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy restriction modulates the development of advanced preneoplastic lesions depending on the level of fat in the diet.
    Lasko CM; Good CK; Adam J; Bird RP
    Nutr Cancer; 1999; 33(1):69-75. PubMed ID: 10227046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ability of aberrant crypt foci characteristics to predict colonic tumor incidence in rats fed cholic acid.
    Magnuson BA; Carr I; Bird RP
    Cancer Res; 1993 Oct; 53(19):4499-504. PubMed ID: 8402621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of aberrant crypt foci by dietary fat and caloric restriction: the effects of delayed intervention.
    Lasko CM; Bird RP
    Cancer Epidemiol Biomarkers Prev; 1995; 4(1):49-55. PubMed ID: 7894324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous exposure to dietary acrylamide and corn oil developed carcinogenesis through cell proliferation and inhibition of apoptosis by regulating p53-mediated mitochondria-dependent signaling pathway.
    Zhang X
    Toxicol Ind Health; 2009 Mar; 25(2):101-9. PubMed ID: 19458132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dietary fat and colon cancer: modulating effect of types and amount of dietary fat on ras-p21 function during promotion and progression stages of colon cancer.
    Singh J; Hamid R; Reddy BS
    Cancer Res; 1997 Jan; 57(2):253-8. PubMed ID: 9000564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyethylene-glycol suppresses colon cancer and causes dose-dependent regression of azoxymethane-induced aberrant crypt foci in rats.
    Parnaud G; Taché S; Peiffer G; Corpet DE
    Cancer Res; 1999 Oct; 59(20):5143-7. PubMed ID: 10537289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mucin-depleted foci (MDF) in the colon of rats treated with azoxymethane (AOM) are useful biomarkers for colon carcinogenesis.
    Femia AP; Dolara P; Caderni G
    Carcinogenesis; 2004 Feb; 25(2):277-81. PubMed ID: 14604897
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of caloric restriction and dietary fat on epithelial cell proliferation in rat colon.
    Steinbach G; Kumar SP; Reddy BS; Lipkin M; Holt PR
    Cancer Res; 1993 Jun; 53(12):2745-9. PubMed ID: 8504415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of adlay on azoxymethane-induced colon carcinogenesis in rats.
    Shih CK; Chiang W; Kuo ML
    Food Chem Toxicol; 2004 Aug; 42(8):1339-47. PubMed ID: 15207385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dietary fat and colon cancer: modulation of cyclooxygenase-2 by types and amount of dietary fat during the postinitiation stage of colon carcinogenesis.
    Singh J; Hamid R; Reddy BS
    Cancer Res; 1997 Aug; 57(16):3465-70. PubMed ID: 9270014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative effects of secondary bile acids, deoxycholic and lithocholic acids, on aberrant crypt foci growth in the postinitiation phases of colon carcinogenesis.
    Baijal PK; Fitzpatrick DW; Bird RP
    Nutr Cancer; 1998; 31(2):81-9. PubMed ID: 9770718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of a high-fat diet on azoxymethane-induced aberrant crypt foci and fecal biochemistry and microbial activity in rats.
    Morotomi M; Sakaitani Y; Satou M; Takahashi T; Takagi A; Onoue M
    Nutr Cancer; 1997; 27(1):84-91. PubMed ID: 8970188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diosgenin, a steroid saponin of Trigonella foenum graecum (Fenugreek), inhibits azoxymethane-induced aberrant crypt foci formation in F344 rats and induces apoptosis in HT-29 human colon cancer cells.
    Raju J; Patlolla JM; Swamy MV; Rao CV
    Cancer Epidemiol Biomarkers Prev; 2004 Aug; 13(8):1392-8. PubMed ID: 15298963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of different levels of omega-3 and omega-6 fatty acids on azoxymethane-induced colon carcinogenesis in F344 rats.
    Reddy BS; Sugie S
    Cancer Res; 1988 Dec; 48(23):6642-7. PubMed ID: 3180073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.