These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
443 related articles for article (PubMed ID: 21421281)
21. Inorganic materials as ameliorants for soil remediation of metal toxicity to wild mustard (Sinapis arvensis L.). Ribeiro Filho MR; Siqueira JO; Vangronsveld J; Soares CR; Curi N Int J Phytoremediation; 2011; 13(5):498-512. PubMed ID: 21598779 [TBL] [Abstract][Full Text] [Related]
22. Amendments promote the development of Lolium perenne in soils affected by historical copper smelting operations. Goecke P; Ginocchio R; Mench M; Neaman A Int J Phytoremediation; 2011 Jul; 13(6):552-66. PubMed ID: 21972502 [TBL] [Abstract][Full Text] [Related]
23. Effect of nano zero-valent iron application on As, Cd, Pb, and Zn availability in the rhizosphere of metal(loid) contaminated soils. Vítková M; Puschenreiter M; Komárek M Chemosphere; 2018 Jun; 200():217-226. PubMed ID: 29486361 [TBL] [Abstract][Full Text] [Related]
24. Effects of soil amendments on the extractability and speciation of cadmium, lead, and copper in a contaminated soil. Lin D; Zhou Q Bull Environ Contam Toxicol; 2009 Jul; 83(1):136-40. PubMed ID: 19381428 [TBL] [Abstract][Full Text] [Related]
25. Comparison of EDTA-enhanced phytoextraction and phytostabilisation strategies with Lolium perenne on a heavy metal contaminated soil. Lambrechts T; Gustot Q; Couder E; Houben D; Iserentant A; Lutts S Chemosphere; 2011 Nov; 85(8):1290-8. PubMed ID: 21839490 [TBL] [Abstract][Full Text] [Related]
26. Remediation of lead and cadmium-contaminated soils. Salama AK; Osman KA; Gouda NA Int J Phytoremediation; 2016; 18(4):364-7. PubMed ID: 26515924 [TBL] [Abstract][Full Text] [Related]
27. Wood pellet fly ash and bottom ash as an effective liming agent and nutrient source for rye grass (Lolium perenne L.) and oats (Avena sativa). Park ND; Michael Rutherford P; Thring RW; Helle SS Chemosphere; 2012 Jan; 86(4):427-32. PubMed ID: 22104334 [TBL] [Abstract][Full Text] [Related]
28. Silicate-mediated alleviation of Pb toxicity in banana grown in Pb-contaminated soil. Li L; Zheng C; Fu Y; Wu D; Yang X; Shen H Biol Trace Elem Res; 2012 Jan; 145(1):101-8. PubMed ID: 21826608 [TBL] [Abstract][Full Text] [Related]
29. Plant uptake and availability of antimony, lead, copper and zinc in oxic and reduced shooting range soil. Hockmann K; Tandy S; Studer B; Evangelou MWH; Schulin R Environ Pollut; 2018 Jul; 238():255-262. PubMed ID: 29567447 [TBL] [Abstract][Full Text] [Related]
30. Evaluation of dissipation mechanisms by Lolium perenne L, and Raphanus sativus for pentachlorophenol (PCP) in copper co-contaminated soil. Lin Q; Wang Z; Ma S; Chen Y Sci Total Environ; 2006 Sep; 368(2-3):814-22. PubMed ID: 16643990 [TBL] [Abstract][Full Text] [Related]
31. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China). Liu H; Probst A; Liao B Sci Total Environ; 2005 Mar; 339(1-3):153-66. PubMed ID: 15740766 [TBL] [Abstract][Full Text] [Related]
32. Organic residues as immobilizing agents in aided phytostabilization: (I) effects on soil chemical characteristics. Alvarenga P; Gonçalves AP; Fernandes RM; de Varennes A; Vallini G; Duarte E; Cunha-Queda AC Chemosphere; 2009 Mar; 74(10):1292-300. PubMed ID: 19118864 [TBL] [Abstract][Full Text] [Related]
33. Effects of amendments on copper, cadmium, and lead phytoextraction by Lolium perenne from multiple-metal contaminated solution. Gunawardana B; Singhal N; Johnson A Int J Phytoremediation; 2011 Mar; 13(3):215-32. PubMed ID: 21598788 [TBL] [Abstract][Full Text] [Related]
34. Effect of in situ soil amendments on arsenic uptake in successive harvests of ryegrass (Lolium perenne cv Elka) grown in amended As-polluted soils. Hartley W; Lepp NW Environ Pollut; 2008 Dec; 156(3):1030-40. PubMed ID: 18524441 [TBL] [Abstract][Full Text] [Related]
35. Lumbricus terrestris L. activity increases the availability of metals and their accumulation in maize and barley. Ruiz E; Alonso-Azcárate J; Rodríguez L Environ Pollut; 2011 Mar; 159(3):722-8. PubMed ID: 21190761 [TBL] [Abstract][Full Text] [Related]
36. Phytostabilization of a metal contaminated sandy soil. II: Influence of compost and/or inorganic metal immobilizing soil amendments on metal leaching. Ruttens A; Colpaert JV; Mench M; Boisson J; Carleer R; Vangronsveld J Environ Pollut; 2006 Nov; 144(2):533-9. PubMed ID: 16530308 [TBL] [Abstract][Full Text] [Related]
37. Heavy metal (Cu, Zn, Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils. Lamb DT; Ming H; Megharaj M; Naidu R J Hazard Mater; 2009 Nov; 171(1-3):1150-8. PubMed ID: 19656626 [TBL] [Abstract][Full Text] [Related]
38. Speciation of Cd and Zn in contaminated soils assessed by DGT-DIFS, and WHAM/Model VI in relation to uptake by spinach and ryegrass. Almås AR; Lombnaes P; Sogn TA; Mulder J Chemosphere; 2006 Mar; 62(10):1647-55. PubMed ID: 16084561 [TBL] [Abstract][Full Text] [Related]
39. Efficacy of biosolids in assisted phytostabilization of metalliferous acidic sandy soils with five grass species. Kacprzak M; Grobelak A; Grosser A; Prasad MN Int J Phytoremediation; 2014; 16(6):593-608. PubMed ID: 24912245 [TBL] [Abstract][Full Text] [Related]
40. Effects of surface-modified nano-scale carbon black on Cu and Zn fractionations in contaminated soil. Cheng JM; Liu YZ; Wang HW Int J Phytoremediation; 2014; 16(1):86-94. PubMed ID: 24912217 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]