BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 21421306)

  • 1. Strategy of controlling the volumetric loading rate to promote hydrogen-production performance in a mesophilic-kitchen-waste fermentor and the microbial ecology analyses.
    Li SL; Lin JS; Wang YH; Lee ZK; Kuo SC; Tseng IC; Cheng SS
    Bioresour Technol; 2011 Sep; 102(18):8682-7. PubMed ID: 21421306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of organic loading rate on biohydrogen production in an up-flow anaerobic packed bed reactor (UAnPBR).
    Ferraz AD; Zaiat M; Gupta M; Elbeshbishy E; Hafez H; Nakhla G
    Bioresour Technol; 2014 Jul; 164():371-9. PubMed ID: 24865326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous hydrogen production from glucose by using extreme thermophilic anaerobic microflora.
    Yokoyama H; Ohmori H; Waki M; Ogino A; Tanaka Y
    J Biosci Bioeng; 2009 Jan; 107(1):64-6. PubMed ID: 19147112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of bioenergy recovery processes treating organic residues from ethanol fermentation process.
    Juang CP; Whang LM; Cheng HH
    Bioresour Technol; 2011 May; 102(9):5394-9. PubMed ID: 21055919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fermentative hydrogen production and bacterial community structure in high-rate anaerobic bioreactors containing silicone-immobilized and self-flocculated sludge.
    Wu SY; Hung CH; Lin CN; Chen HW; Lee AS; Chang JS
    Biotechnol Bioeng; 2006 Apr; 93(5):934-46. PubMed ID: 16329152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biohydrogen production from Tequila vinasses in an anaerobic sequencing batch reactor: effect of initial substrate concentration, temperature and hydraulic retention time.
    BuitrĂ³n G; Carvajal C
    Bioresour Technol; 2010 Dec; 101(23):9071-7. PubMed ID: 20655747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organic loading rate impact on biohydrogen production and microbial communities at anaerobic fluidized thermophilic bed reactors treating sugarcane stillage.
    Santos SC; Rosa PR; Sakamoto IK; Varesche MB; Silva EL
    Bioresour Technol; 2014 May; 159():55-63. PubMed ID: 24632626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two stage anaerobic baffled reactors for bio-hydrogen production from municipal food waste.
    Tawfik A; Salem A; El-Qelish M
    Bioresour Technol; 2011 Sep; 102(18):8723-6. PubMed ID: 21498075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fermentative hydrogen production from fresh leachate in batch and continuous bioreactors.
    Liu Q; Zhang X; Yu L; Zhao A; Tai J; Liu J; Qian G; Xu ZP
    Bioresour Technol; 2011 May; 102(9):5411-7. PubMed ID: 21071216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biohydrogen from thermophilic co-fermentation of swine manure with fruit and vegetable waste: maximizing stable production without pH control.
    Tenca A; Schievano A; Perazzolo F; Adani F; Oberti R
    Bioresour Technol; 2011 Sep; 102(18):8582-8. PubMed ID: 21530242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sewage sludge addition to food waste synergistically enhances hydrogen fermentation performance.
    Kim DH; Kim SH; Kim HW; Kim MS; Shin HS
    Bioresour Technol; 2011 Sep; 102(18):8501-6. PubMed ID: 21571523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of bioenergy production from organic wastes by two-stage anaerobic hydrogen and methane production process.
    Luo G; Xie L; Zhou Q; Angelidaki I
    Bioresour Technol; 2011 Sep; 102(18):8700-6. PubMed ID: 21353538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maximum organic loading rate for the single-stage wet anaerobic digestion of food waste.
    Nagao N; Tajima N; Kawai M; Niwa C; Kurosawa N; Matsuyama T; Yusoff FM; Toda T
    Bioresour Technol; 2012 Aug; 118():210-8. PubMed ID: 22705526
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dark H2 fermentation from sucrose and xylose using H2-producing indigenous bacteria: feasibility and kinetic studies.
    Lo YC; Chen WM; Hung CH; Chen SD; Chang JS
    Water Res; 2008 Feb; 42(4-5):827-42. PubMed ID: 17889245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of initial pH independent of operational pH on hydrogen fermentation of food waste.
    Kim DH; Kim SH; Jung KW; Kim MS; Shin HS
    Bioresour Technol; 2011 Sep; 102(18):8646-52. PubMed ID: 21481587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial community structure of ethanol type fermentation in bio-hydrogen production.
    Ren N; Xing D; Rittmann BE; Zhao L; Xie T; Zhao X
    Environ Microbiol; 2007 May; 9(5):1112-25. PubMed ID: 17472628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pyrosequencing reveals highly diverse microbial communities in microbial electrolysis cells involved in enhanced H2 production from waste activated sludge.
    Lu L; Xing D; Ren N
    Water Res; 2012 May; 46(7):2425-34. PubMed ID: 22374298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comprehensive microbial insight into two-stage anaerobic digestion of food waste-recycling wastewater.
    Shin SG; Han G; Lim J; Lee C; Hwang S
    Water Res; 2010 Sep; 44(17):4838-49. PubMed ID: 20678786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison study on the high-rate co-digestion of sewage sludge and food waste using a temperature-phased anaerobic sequencing batch reactor system.
    Kim HW; Nam JY; Shin HS
    Bioresour Technol; 2011 Aug; 102(15):7272-9. PubMed ID: 21600764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.