These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 21421342)
1. Natural variation in the freezing tolerance of Arabidopsis thaliana: effects of RNAi-induced CBF depletion and QTL localisation vary among accessions. Gery C; Zuther E; Schulz E; Legoupi J; Chauveau A; McKhann H; Hincha DK; Téoulé E Plant Sci; 2011 Jan; 180(1):12-23. PubMed ID: 21421342 [TBL] [Abstract][Full Text] [Related]
2. Natural variation in CBF gene sequence, gene expression and freezing tolerance in the Versailles core collection of Arabidopsis thaliana. McKhann HI; Gery C; Bérard A; Lévêque S; Zuther E; Hincha DK; De Mita S; Brunel D; Téoulé E BMC Plant Biol; 2008 Oct; 8():105. PubMed ID: 18922165 [TBL] [Abstract][Full Text] [Related]
3. Natural variation in the C-repeat binding factor cold response pathway correlates with local adaptation of Arabidopsis ecotypes. Gehan MA; Park S; Gilmour SJ; An C; Lee CM; Thomashow MF Plant J; 2015 Nov; 84(4):682-93. PubMed ID: 26369909 [TBL] [Abstract][Full Text] [Related]
4. CBF-dependent and CBF-independent regulatory pathways contribute to the differences in freezing tolerance and cold-regulated gene expression of two Arabidopsis ecotypes locally adapted to sites in Sweden and Italy. Park S; Gilmour SJ; Grumet R; Thomashow MF PLoS One; 2018; 13(12):e0207723. PubMed ID: 30517145 [TBL] [Abstract][Full Text] [Related]
5. Genetic and molecular analyses of natural variation indicate CBF2 as a candidate gene for underlying a freezing tolerance quantitative trait locus in Arabidopsis. Alonso-Blanco C; Gomez-Mena C; Llorente F; Koornneef M; Salinas J; Martínez-Zapater JM Plant Physiol; 2005 Nov; 139(3):1304-12. PubMed ID: 16244146 [TBL] [Abstract][Full Text] [Related]
6. Natural genetic variation in acclimation capacity at sub-zero temperatures after cold acclimation at 4 degrees C in different Arabidopsis thaliana accessions. Le MQ; Engelsberger WR; Hincha DK Cryobiology; 2008 Oct; 57(2):104-12. PubMed ID: 18619434 [TBL] [Abstract][Full Text] [Related]
7. Mutational Evidence for the Critical Role of CBF Transcription Factors in Cold Acclimation in Arabidopsis. Zhao C; Zhang Z; Xie S; Si T; Li Y; Zhu JK Plant Physiol; 2016 Aug; 171(4):2744-59. PubMed ID: 27252305 [TBL] [Abstract][Full Text] [Related]
8. Regulation of the Arabidopsis CBF regulon by a complex low-temperature regulatory network. Park S; Lee CM; Doherty CJ; Gilmour SJ; Kim Y; Thomashow MF Plant J; 2015 Apr; 82(2):193-207. PubMed ID: 25736223 [TBL] [Abstract][Full Text] [Related]
9. Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon. Novillo F; Medina J; Salinas J Proc Natl Acad Sci U S A; 2007 Dec; 104(52):21002-7. PubMed ID: 18093929 [TBL] [Abstract][Full Text] [Related]
10. Clinal variation in the non-acclimated and cold-acclimated freezing tolerance of Arabidopsis thaliana accessions. Zuther E; Schulz E; Childs LH; Hincha DK Plant Cell Environ; 2012 Oct; 35(10):1860-78. PubMed ID: 22512351 [TBL] [Abstract][Full Text] [Related]
11. The unified ICE-CBF pathway provides a transcriptional feedback control of freezing tolerance during cold acclimation in Arabidopsis. Kim YS; Lee M; Lee JH; Lee HJ; Park CM Plant Mol Biol; 2015 Sep; 89(1-2):187-201. PubMed ID: 26311645 [TBL] [Abstract][Full Text] [Related]
12. The broad roles of CBF genes: From development to abiotic stress. Zhao C; Zhu JK Plant Signal Behav; 2016 Aug; 11(8):e1215794. PubMed ID: 27472659 [TBL] [Abstract][Full Text] [Related]
13. Photoperiodic regulation of the C-repeat binding factor (CBF) cold acclimation pathway and freezing tolerance in Arabidopsis thaliana. Lee CM; Thomashow MF Proc Natl Acad Sci U S A; 2012 Sep; 109(37):15054-9. PubMed ID: 22927419 [TBL] [Abstract][Full Text] [Related]
14. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Fowler S; Thomashow MF Plant Cell; 2002 Aug; 14(8):1675-90. PubMed ID: 12172015 [TBL] [Abstract][Full Text] [Related]
15. The cbfs triple mutants reveal the essential functions of CBFs in cold acclimation and allow the definition of CBF regulons in Arabidopsis. Jia Y; Ding Y; Shi Y; Zhang X; Gong Z; Yang S New Phytol; 2016 Oct; 212(2):345-53. PubMed ID: 27353960 [TBL] [Abstract][Full Text] [Related]
16. Mapping quantitative trait loci for freezing tolerance in a recombinant inbred line population of Arabidopsis thaliana accessions Tenela and C24 reveals REVEILLE1 as negative regulator of cold acclimation. Meissner M; Orsini E; Ruschhaupt M; Melchinger AE; Hincha DK; Heyer AG Plant Cell Environ; 2013 Jul; 36(7):1256-67. PubMed ID: 23240770 [TBL] [Abstract][Full Text] [Related]
17. Relaxed selection on the CBF/DREB1 regulatory genes and reduced freezing tolerance in the southern range of Arabidopsis thaliana. Zhen Y; Ungerer MC Mol Biol Evol; 2008 Dec; 25(12):2547-55. PubMed ID: 18775899 [TBL] [Abstract][Full Text] [Related]
19. Natural variation of C-repeat-binding factor (CBFs) genes is a major cause of divergence in freezing tolerance among a group of Arabidopsis thaliana populations along the Yangtze River in China. Kang J; Zhang H; Sun T; Shi Y; Wang J; Zhang B; Wang Z; Zhou Y; Gu H New Phytol; 2013 Sep; 199(4):1069-1080. PubMed ID: 23721132 [TBL] [Abstract][Full Text] [Related]
20. Characterization of BdCBF genes and genome-wide transcriptome profiling of BdCBF3-dependent and -independent cold stress responses in Brachypodium distachyon. Hao J; Yang J; Dong J; Fei SZ Plant Sci; 2017 Sep; 262():52-61. PubMed ID: 28716420 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]