BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 21421349)

  • 1. Molecular mechanisms underlying frost tolerance in perennial grasses adapted to cold climates.
    Sandve SR; Kosmala A; Rudi H; Fjellheim S; Rapacz M; Yamada T; Rognli OA
    Plant Sci; 2011 Jan; 180(1):69-77. PubMed ID: 21421349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of candidate genes important for frost tolerance in Festuca pratensis Huds. by transcriptional profiling.
    Rudi H; Sandve SR; Opseth LM; Larsen A; Rognli OA
    Plant Sci; 2011 Jan; 180(1):78-85. PubMed ID: 21421350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insight into cellular proteome of Lolium multiflorum/Festuca arundinacea introgression forms to decipher crucial mechanisms of cold acclimation in forage grasses.
    Augustyniak A; Perlikowski D; Rapacz M; Kościelniak J; Kosmala A
    Plant Sci; 2018 Jul; 272():22-31. PubMed ID: 29807594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inside the CBF locus in Poaceae.
    Tondelli A; Francia E; Barabaschi D; Pasquariello M; Pecchioni N
    Plant Sci; 2011 Jan; 180(1):39-45. PubMed ID: 21421345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Freezing Tolerance of
    Augustyniak A; Pawłowicz I; Lechowicz K; Izbiańska-Jankowska K; Arasimowicz-Jelonek M; Rapacz M; Perlikowski D; Kosmala A
    Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32824486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. QTL analyses and comparative genetic mapping of frost tolerance, winter survival and drought tolerance in meadow fescue (Festuca pratensis Huds.).
    Alm V; Busso CS; Ergon A; Rudi H; Larsen A; Humphreys MW; Rognli OA
    Theor Appl Genet; 2011 Aug; 123(3):369-82. PubMed ID: 21505831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolite profiling during cold acclimation of Lolium perenne genotypes distinct in the level of frost tolerance.
    Bocian A; Zwierzykowski Z; Rapacz M; Koczyk G; Ciesiołka D; Kosmala A
    J Appl Genet; 2015 Nov; 56(4):439-449. PubMed ID: 26025228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of leaf proteins differentially accumulated during cold acclimation between Festuca pratensis plants with distinct levels of frost tolerance.
    Kosmala A; Bocian A; Rapacz M; Jurczyk B; Zwierzykowski Z
    J Exp Bot; 2009; 60(12):3595-609. PubMed ID: 19553368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tracking the evolution of a cold stress associated gene family in cold tolerant grasses.
    Sandve SR; Rudi H; Asp T; Rognli OA
    BMC Evol Biol; 2008 Sep; 8():245. PubMed ID: 18775065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differences in leaf proteome response to cold acclimation between Lolium perenne plants with distinct levels of frost tolerance.
    Bocian A; Kosmala A; Rapacz M; Jurczyk B; Marczak Ł; Zwierzykowski Z
    J Plant Physiol; 2011 Jul; 168(11):1271-9. PubMed ID: 21489653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chilling and frost tolerance in Miscanthus and Saccharum genotypes bred for cool temperate climates.
    Friesen PC; Peixoto MM; Busch FA; Johnson DC; Sage RF
    J Exp Bot; 2014 Jul; 65(13):3749-58. PubMed ID: 24642848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leaf cold acclimation and freezing injury in C3 and C4 grasses of the Mongolian Plateau.
    Liu MZ; Osborne CP
    J Exp Bot; 2008; 59(15):4161-70. PubMed ID: 18980952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in Lolium perenne transcriptome during cold acclimation in two genotypes adapted to different climatic conditions.
    Abeynayake SW; Byrne S; Nagy I; Jonavičienė K; Etzerodt TP; Boelt B; Asp T
    BMC Plant Biol; 2015 Oct; 15():250. PubMed ID: 26474965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Freezing tolerance revisited-effects of variable temperatures on gene regulation in temperate grasses and legumes.
    Kovi MR; Ergon Å; Rognli OA
    Curr Opin Plant Biol; 2016 Oct; 33():140-146. PubMed ID: 27479037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of Cold Acclimation and Its Role in Niche Transition in the Temperate Grass Subfamily Pooideae.
    Schubert M; Grønvold L; Sandve SR; Hvidsten TR; Fjellheim S
    Plant Physiol; 2019 May; 180(1):404-419. PubMed ID: 30850470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sub-zero cold tolerance of Spartina pectinata (prairie cordgrass) and Miscanthus × giganteus: candidate bioenergy crops for cool temperate climates.
    Friesen PC; Peixoto Mde M; Lee DK; Sage RF
    J Exp Bot; 2015 Jul; 66(14):4403-13. PubMed ID: 25873680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cold acclimation induces rapid and dynamic changes in freeze tolerance mechanisms in the cryophile Deschampsia antarctica E. Desv.
    Chew O; Lelean S; John UP; Spangenberg GC
    Plant Cell Environ; 2012 Apr; 35(4):829-37. PubMed ID: 22070607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Abiotic stresses influence the transcript abundance of PIP and TIP aquaporins in Festuca species.
    Pawłowicz I; Rapacz M; Perlikowski D; Gondek K; Kosmala A
    J Appl Genet; 2017 Nov; 58(4):421-435. PubMed ID: 28779288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cold acclimation in warmer extended autumns impairs freezing tolerance of perennial ryegrass (Lolium perenne) and timothy (Phleum pratense).
    Dalmannsdottir S; Jørgensen M; Rapacz M; Østrem L; Larsen A; Rødven R; Rognli OA
    Physiol Plant; 2017 Jul; 160(3):266-281. PubMed ID: 28144950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Successive evolutionary steps drove Pooideae grasses from tropical to temperate regions.
    Zhong J; Robbett M; Poire A; Preston JC
    New Phytol; 2018 Jan; 217(2):925-938. PubMed ID: 29091285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.