These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 21421405)

  • 21. Assessment of nutritional and quality traits in biofortified bread wheat genotypes.
    Kaur N; Kaur H; Mavi GS
    Food Chem; 2020 Jan; 302():125342. PubMed ID: 31416002
    [TBL] [Abstract][Full Text] [Related]  

  • 22. From harvest to health: challenges for developing biofortified staple foods and determining their impact on micronutrient status.
    Hotz C; McClafferty B
    Food Nutr Bull; 2007 Jun; 28(2 Suppl):S271-9. PubMed ID: 17658073
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reducing Mineral and Vitamin Deficiencies through Biofortification: Progress Under HarvestPlus.
    Bouis H
    World Rev Nutr Diet; 2018; 118():112-122. PubMed ID: 29656297
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Research advances in iron and zinc transfer from soil to plant in intercropping systems].
    Xia HY; Xue YF; Meng WW; Yu LM; Liu LY; Zhang Z
    Ying Yong Sheng Tai Xue Bao; 2015 Apr; 26(4):1263-70. PubMed ID: 26259472
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Micronutrient interactions: effects on absorption and bioavailability.
    Sandström B
    Br J Nutr; 2001 May; 85 Suppl 2():S181-5. PubMed ID: 11509108
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Peanut/maize intercropping induced changes in rhizosphere and nutrient concentrations in shoots.
    Inal A; Gunes A; Zhang F; Cakmak I
    Plant Physiol Biochem; 2007 May; 45(5):350-6. PubMed ID: 17467283
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simultaneous Biofortification of Wheat with Zinc, Iodine, Selenium, and Iron through Foliar Treatment of a Micronutrient Cocktail in Six Countries.
    Zou C; Du Y; Rashid A; Ram H; Savasli E; Pieterse PJ; Ortiz-Monasterio I; Yazici A; Kaur C; Mahmood K; Singh S; Le Roux MR; Kuang W; Onder O; Kalayci M; Cakmak I
    J Agric Food Chem; 2019 Jul; 67(29):8096-8106. PubMed ID: 31260296
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bioavailability of iron, zinc, and provitamin A carotenoids in biofortified staple crops.
    La Frano MR; de Moura FF; Boy E; Lönnerdal B; Burri BJ
    Nutr Rev; 2014 May; 72(5):289-307. PubMed ID: 24689451
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Zinc biofortification of cereals: problems and solutions.
    Palmgren MG; Clemens S; Williams LE; Krämer U; Borg S; Schjørring JK; Sanders D
    Trends Plant Sci; 2008 Sep; 13(9):464-73. PubMed ID: 18701340
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Factors influencing micronutrient bioavailability in biofortified crops.
    Bechoff A; Dhuique-Mayer C
    Ann N Y Acad Sci; 2017 Feb; 1390(1):74-87. PubMed ID: 28009050
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Arbuscular mycorrhizal fungal inoculation and soil zinc fertilisation affect the productivity and the bioavailability of zinc and iron in durum wheat.
    Tran BTT; Cavagnaro TR; Watts-Williams SJ
    Mycorrhiza; 2019 Oct; 29(5):445-457. PubMed ID: 31456075
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Advanced biotechnological strategies towards the development of crops with enhanced micronutrient content.
    Banerjee S; Roy P; Nandi S; Roy S
    Plant Growth Regul; 2023; 100(2):355-371. PubMed ID: 36686885
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Expression patterns of QTL based and other candidate genes in Madhukar × Swarna RILs with contrasting levels of iron and zinc in unpolished rice grains.
    Agarwal S; Tripura Venkata VG; Kotla A; Mangrauthia SK; Neelamraju S
    Gene; 2014 Aug; 546(2):430-6. PubMed ID: 24887487
    [TBL] [Abstract][Full Text] [Related]  

  • 34. GM biofortified crops: potential effects on targeting the micronutrient intake gap in human populations.
    De Steur H; Mehta S; Gellynck X; Finkelstein JL
    Curr Opin Biotechnol; 2017 Apr; 44():181-188. PubMed ID: 28288329
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Micronutrient (Zn, Cu, Fe)-gene interactions in ageing and inflammatory age-related diseases: implications for treatments.
    Mocchegiani E; Costarelli L; Giacconi R; Piacenza F; Basso A; Malavolta M
    Ageing Res Rev; 2012 Apr; 11(2):297-319. PubMed ID: 22322094
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biofortification of pea (Pisum sativum L.): a review.
    Guindon MF; Cazzola F; Palacios T; Gatti I; Bermejo C; Cointry E
    J Sci Food Agric; 2021 Jul; 101(9):3551-3563. PubMed ID: 33417241
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Breeding for micronutrients in staple food crops from a human nutrition perspective.
    Welch RM; Graham RD
    J Exp Bot; 2004 Feb; 55(396):353-64. PubMed ID: 14739261
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Small and Hungry: MicroRNAs in Micronutrient Homeostasis of Plants.
    Patel P; Yadav K; Ganapathi TR
    Microrna; 2017; 6(1):22-41. PubMed ID: 28103776
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Overlapping transcriptional expression response of wheat zinc-induced facilitator-like transporters emphasize important role during Fe and Zn stress.
    Sharma S; Kaur G; Kumar A; Meena V; Kaur J; Pandey AK
    BMC Mol Biol; 2019 Sep; 20(1):22. PubMed ID: 31547799
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Root uptake and shoot accumulation of cadmium by lettuce at various Cd:Zn ratios in nutrient solution.
    Zare AA; Khoshgoftarmanesh AH; Malakouti MJ; Bahrami HA; Chaney RL
    Ecotoxicol Environ Saf; 2018 Feb; 148():441-446. PubMed ID: 29102904
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.