BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 21421752)

  • 21. The Staphylococcus aureus lrgAB operon modulates murein hydrolase activity and penicillin tolerance.
    Groicher KH; Firek BA; Fujimoto DF; Bayles KW
    J Bacteriol; 2000 Apr; 182(7):1794-801. PubMed ID: 10714982
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Staphylococcus aureus CcpA affects biofilm formation.
    Seidl K; Goerke C; Wolz C; Mack D; Berger-Bächi B; Bischoff M
    Infect Immun; 2008 May; 76(5):2044-50. PubMed ID: 18347047
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Understanding the Streptococcus mutans Cid/Lrg System through CidB Function.
    Ahn SJ; Rice KC
    Appl Environ Microbiol; 2016 Oct; 82(20):6189-6203. PubMed ID: 27520814
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Acetic acid induces expression of the Staphylococcus aureus cidABC and lrgAB murein hydrolase regulator operons.
    Rice KC; Nelson JB; Patton TG; Yang SJ; Bayles KW
    J Bacteriol; 2005 Feb; 187(3):813-21. PubMed ID: 15659658
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The novel Pseudomonas aeruginosa two-component regulator BfmR controls bacteriophage-mediated lysis and DNA release during biofilm development through PhdA.
    Petrova OE; Schurr JR; Schurr MJ; Sauer K
    Mol Microbiol; 2011 Aug; 81(3):767-83. PubMed ID: 21696457
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Adaptive expression of biofilm regulators and adhesion factors of
    Li T; Wang G; Yin P; Li Z; Zhang L; Tang P
    Exp Ther Med; 2020 Jul; 20(1):512-520. PubMed ID: 32509022
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pfs promotes autolysis-dependent release of eDNA and biofilm formation in Staphylococcus aureus.
    Bao Y; Zhang X; Jiang Q; Xue T; Sun B
    Med Microbiol Immunol; 2015 Apr; 204(2):215-26. PubMed ID: 25187407
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Environmental Triggers of
    Ishkov IP; Ahn SJ; Rice KC; Hagen SJ
    Front Microbiol; 2020; 11():18. PubMed ID: 32047487
    [TBL] [Abstract][Full Text] [Related]  

  • 29. GdpS contributes to Staphylococcus aureus biofilm formation by regulation of eDNA release.
    Fischer A; Kambara K; Meyer H; Stenz L; Bonetti EJ; Girard M; Lalk M; Francois P; Schrenzel J
    Int J Med Microbiol; 2014 May; 304(3-4):284-99. PubMed ID: 24275081
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transcriptional and functional analysis shows sodium houttuyfonate-mediated inhibition of autolysis in Staphylococcus aureus.
    Liu G; Xiang H; Tang X; Zhang K; Wu X; Wang X; Guo N; Feng H; Wang G; Liu L; Shi Q; Shen F; Xing M; Yuan P; Liu M; Yu L
    Molecules; 2011 Oct; 16(10):8848-65. PubMed ID: 22019573
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A chloroplast envelope membrane protein containing a putative LrgB domain related to the control of bacterial death and lysis is required for chloroplast development in Arabidopsis thaliana.
    Yang Y; Jin H; Chen Y; Lin W; Wang C; Chen Z; Han N; Bian H; Zhu M; Wang J
    New Phytol; 2012 Jan; 193(1):81-95. PubMed ID: 21916894
    [TBL] [Abstract][Full Text] [Related]  

  • 32. SrrAB Modulates Staphylococcus aureus Cell Death through Regulation of cidABC Transcription.
    Windham IH; Chaudhari SS; Bose JL; Thomas VC; Bayles KW
    J Bacteriol; 2016 Jan; 198(7):1114-22. PubMed ID: 26811317
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional analysis of the lysis genes of Staphylococcus aureus phage P68 in Escherichia coli.
    Takáč M; Witte A; Bläsi U
    Microbiology (Reading); 2005 Jul; 151(Pt 7):2331-2342. PubMed ID: 16000723
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Use of microfluidic technology to analyze gene expression during Staphylococcus aureus biofilm formation reveals distinct physiological niches.
    Moormeier DE; Endres JL; Mann EE; Sadykov MR; Horswill AR; Rice KC; Fey PD; Bayles KW
    Appl Environ Microbiol; 2013 Jun; 79(11):3413-24. PubMed ID: 23524683
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bioinformatic characterization of endolysins and holin-like membrane proteins in the lysis cassette of phages that infect Gordonia rubripertincta.
    Pollenz RS; Bland J; Pope WH
    PLoS One; 2022; 17(11):e0276603. PubMed ID: 36395171
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Redundant and Distinct Roles of Secreted Protein Eap and Cell Wall-Anchored Protein SasG in Biofilm Formation and Pathogenicity of Staphylococcus aureus.
    Yonemoto K; Chiba A; Sugimoto S; Sato C; Saito M; Kinjo Y; Marumo K; Mizunoe Y
    Infect Immun; 2019 Apr; 87(4):. PubMed ID: 30670553
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interconnections between Sigma B, agr, and proteolytic activity in Staphylococcus aureus biofilm maturation.
    Lauderdale KJ; Boles BR; Cheung AL; Horswill AR
    Infect Immun; 2009 Apr; 77(4):1623-35. PubMed ID: 19188357
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genetic and biochemical analysis of dimer and oligomer interactions of the lambda S holin.
    Gründling A; Bläsi U; Young R
    J Bacteriol; 2000 Nov; 182(21):6082-90. PubMed ID: 11029428
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MgrA Negatively Regulates Biofilm Formation and Detachment by Repressing the Expression of
    Jiang Q; Jin Z; Sun B
    Appl Environ Microbiol; 2018 Aug; 84(16):. PubMed ID: 29884758
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genetic and Biochemical Analysis of CodY-Mediated Cell Aggregation in Staphylococcus aureus Reveals an Interaction between Extracellular DNA and Polysaccharide in the Extracellular Matrix.
    Mlynek KD; Bulock LL; Stone CJ; Curran LJ; Sadykov MR; Bayles KW; Brinsmade SR
    J Bacteriol; 2020 Mar; 202(8):. PubMed ID: 32015143
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.