These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
342 related articles for article (PubMed ID: 21421917)
1. Emergent properties of proteostasis in managing cystic fibrosis. Balch WE; Roth DM; Hutt DM Cold Spring Harb Perspect Biol; 2011 Feb; 3(2):. PubMed ID: 21421917 [TBL] [Abstract][Full Text] [Related]
2. CFTR: folding, misfolding and correcting the ΔF508 conformational defect. Lukacs GL; Verkman AS Trends Mol Med; 2012 Feb; 18(2):81-91. PubMed ID: 22138491 [TBL] [Abstract][Full Text] [Related]
3. Correctors of the basic trafficking defect of the mutant F508del-CFTR that causes cystic fibrosis. Birault V; Solari R; Hanrahan J; Thomas DY Curr Opin Chem Biol; 2013 Jun; 17(3):353-60. PubMed ID: 23711435 [TBL] [Abstract][Full Text] [Related]
4. Unravelling druggable signalling networks that control F508del-CFTR proteostasis. Hegde RN; Parashuraman S; Iorio F; Ciciriello F; Capuani F; Carissimo A; Carrella D; Belcastro V; Subramanian A; Bounti L; Persico M; Carlile G; Galietta L; Thomas DY; Di Bernardo D; Luini A Elife; 2015 Dec; 4():. PubMed ID: 26701908 [TBL] [Abstract][Full Text] [Related]
5. Transcriptomic and Proteostasis Networks of CFTR and the Development of Small Molecule Modulators for the Treatment of Cystic Fibrosis Lung Disease. Strub MD; McCray PB Genes (Basel); 2020 May; 11(5):. PubMed ID: 32414011 [TBL] [Abstract][Full Text] [Related]
6. Chemical and biological approaches for adapting proteostasis to ameliorate protein misfolding and aggregation diseases: progress and prognosis. Lindquist SL; Kelly JW Cold Spring Harb Perspect Biol; 2011 Dec; 3(12):. PubMed ID: 21900404 [TBL] [Abstract][Full Text] [Related]
7. Targeting CFTR: how to treat cystic fibrosis by CFTR-repairing therapies. Amaral MD Curr Drug Targets; 2011 May; 12(5):683-93. PubMed ID: 21039334 [TBL] [Abstract][Full Text] [Related]
8. Proteostasis Regulators in Cystic Fibrosis: Current Development and Future Perspectives. Brusa I; Sondo E; Falchi F; Pedemonte N; Roberti M; Cavalli A J Med Chem; 2022 Apr; 65(7):5212-5243. PubMed ID: 35377645 [TBL] [Abstract][Full Text] [Related]
9. A chaperone trap contributes to the onset of cystic fibrosis. Coppinger JA; Hutt DM; Razvi A; Koulov AV; Pankow S; Yates JR; Balch WE PLoS One; 2012; 7(5):e37682. PubMed ID: 22701530 [TBL] [Abstract][Full Text] [Related]
10. The proteome speciation of an immortalized cystic fibrosis cell line: New perspectives on the pathophysiology of the disease. Puglia M; Landi C; Gagliardi A; Breslin L; Armini A; Brunetti J; Pini A; Bianchi L; Bini L J Proteomics; 2018 Jan; 170():28-42. PubMed ID: 28970102 [TBL] [Abstract][Full Text] [Related]
11. Control of cystic fibrosis transmembrane conductance regulator membrane trafficking: not just from the endoplasmic reticulum to the Golgi. Farinha CM; Matos P; Amaral MD FEBS J; 2013 Sep; 280(18):4396-406. PubMed ID: 23773658 [TBL] [Abstract][Full Text] [Related]
13. Hallmarks of therapeutic management of the cystic fibrosis functional landscape. Amaral MD; Balch WE J Cyst Fibros; 2015 Nov; 14(6):687-99. PubMed ID: 26526359 [TBL] [Abstract][Full Text] [Related]
14. Application of mass spectrometry to study proteomics and interactomics in cystic fibrosis. Balch WE; Yates JR Methods Mol Biol; 2011; 742():227-47. PubMed ID: 21547736 [TBL] [Abstract][Full Text] [Related]
15. The Folding Pathway of ABC Transporter CFTR: Effective and Robust. van der Sluijs P; Hoelen H; Schmidt A; Braakman I J Mol Biol; 2024 Jul; 436(14):168591. PubMed ID: 38677493 [TBL] [Abstract][Full Text] [Related]
16. Correcting the F508del-CFTR variant by modulating eukaryotic translation initiation factor 3-mediated translation initiation. Hutt DM; Loguercio S; Roth DM; Su AI; Balch WE J Biol Chem; 2018 Aug; 293(35):13477-13495. PubMed ID: 30006345 [TBL] [Abstract][Full Text] [Related]
17. Cystic Fibrosis: Proteostatic correctors of CFTR trafficking and alternative therapeutic targets. Hanrahan JW; Sato Y; Carlile GW; Jansen G; Young JC; Thomas DY Expert Opin Ther Targets; 2019 Aug; 23(8):711-724. PubMed ID: 31169041 [No Abstract] [Full Text] [Related]
18. Human heat shock protein 105/110 kDa (Hsp105/110) regulates biogenesis and quality control of misfolded cystic fibrosis transmembrane conductance regulator at multiple levels. Saxena A; Banasavadi-Siddegowda YK; Fan Y; Bhattacharya S; Roy G; Giovannucci DR; Frizzell RA; Wang X J Biol Chem; 2012 Jun; 287(23):19158-70. PubMed ID: 22505710 [TBL] [Abstract][Full Text] [Related]
19. Chemical chaperones correct the mutant phenotype of the delta F508 cystic fibrosis transmembrane conductance regulator protein. Brown CR; Hong-Brown LQ; Biwersi J; Verkman AS; Welch WJ Cell Stress Chaperones; 1996 Jun; 1(2):117-25. PubMed ID: 9222597 [TBL] [Abstract][Full Text] [Related]
20. Silencing of the Hsp70-specific nucleotide-exchange factor BAG3 corrects the F508del-CFTR variant by restoring autophagy. Hutt DM; Mishra SK; Roth DM; Larsen MB; Angles F; Frizzell RA; Balch WE J Biol Chem; 2018 Aug; 293(35):13682-13695. PubMed ID: 29986884 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]