BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 21422504)

  • 1. Manipulators inspired by the tongue of the chameleon.
    Debray A
    Bioinspir Biomim; 2011 Jun; 6(2):026002. PubMed ID: 21422504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flexible electromagnetic capturer with a rapid ejection feature inspired by a biological ballistic tongue.
    Kan L; Lei F; Song B; Su B; Shi Y
    Bioinspir Biomim; 2020 Sep; 15(6):. PubMed ID: 32647093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design, modeling and control of a pneumatically actuated manipulator inspired by biological continuum structures.
    Kang R; Branson DT; Zheng T; Guglielmino E; Caldwell DG
    Bioinspir Biomim; 2013 Sep; 8(3):036008. PubMed ID: 23851387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. First controlled vertical flight of a biologically inspired microrobot.
    Pérez-Arancibia NO; Ma KY; Galloway KC; Greenberg JD; Wood RJ
    Bioinspir Biomim; 2011 Sep; 6(3):036009. PubMed ID: 21878707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inspiration, simulation and design for smart robot manipulators from the sucker actuation mechanism of cephalopods.
    Grasso FW; Setlur P
    Bioinspir Biomim; 2007 Dec; 2(4):S170-81. PubMed ID: 18037726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical properties of a bio-inspired robotic knifefish with an undulatory propulsor.
    Curet OM; Patankar NA; Lauder GV; MacIver MA
    Bioinspir Biomim; 2011 Jun; 6(2):026004. PubMed ID: 21474864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A bio-robotic platform for integrating internal and external mechanics during muscle-powered swimming.
    Richards CT; Clemente CJ
    Bioinspir Biomim; 2012 Mar; 7(1):016010. PubMed ID: 22345392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Righting and turning in mid-air using appendage inertia: reptile tails, analytical models and bio-inspired robots.
    Jusufi A; Kawano DT; Libby T; Full RJ
    Bioinspir Biomim; 2010 Dec; 5(4):045001. PubMed ID: 21098954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A 3D steady-state model of a tendon-driven continuum soft manipulator inspired by the octopus arm.
    Renda F; Cianchetti M; Giorelli M; Arienti A; Laschi C
    Bioinspir Biomim; 2012 Jun; 7(2):025006. PubMed ID: 22617222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot.
    Onal CD; Rus D
    Bioinspir Biomim; 2013 Jun; 8(2):026003. PubMed ID: 23524383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A biologically inspired meta-control navigation system for the Psikharpax rat robot.
    Caluwaerts K; Staffa M; N'Guyen S; Grand C; Dollé L; Favre-Félix A; Girard B; Khamassi M
    Bioinspir Biomim; 2012 Jun; 7(2):025009. PubMed ID: 22617382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GoQBot: a caterpillar-inspired soft-bodied rolling robot.
    Lin HT; Leisk GG; Trimmer B
    Bioinspir Biomim; 2011 Jun; 6(2):026007. PubMed ID: 21521905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fish and chips: implementation of a neural network model into computer chips to maximize swimming efficiency in autonomous underwater vehicles.
    Blake RW; Ng H; Chan KH; Li J
    Bioinspir Biomim; 2008 Sep; 3(3):034002. PubMed ID: 18626130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [A gearing mechanism with 4 degrees of freedom for robotic applications in medicine].
    Pott P; Weiser P; Scharf HP; Schwarz M
    Biomed Tech (Berl); 2004 Jun; 49(6):177-80. PubMed ID: 15279468
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Are morphological specializations of the hyolingual system in chameleons and salamanders tuned to demands on performance?
    Herrel A; Deban SM; Schaerlaeken V; Timmermans JP; Adriaens D
    Physiol Biochem Zool; 2009; 82(1):29-39. PubMed ID: 19007314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Artificial annelid robot driven by soft actuators.
    Jung K; Koo JC; Nam JD; Lee YK; Choi HR
    Bioinspir Biomim; 2007 Jun; 2(2):S42-9. PubMed ID: 17671328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On designing geometric motion planners to solve regulating and trajectory tracking problems for robotic locomotion systems.
    Asnafi A; Mahzoon M
    Bioinspir Biomim; 2011 Sep; 6(3):036005. PubMed ID: 21852716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flipper-driven terrestrial locomotion of a sea turtle-inspired robot.
    Mazouchova N; Umbanhowar PB; Goldman DI
    Bioinspir Biomim; 2013 Jun; 8(2):026007. PubMed ID: 23612858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinematics and the implementation of an elephant's trunk manipulator and other continuum style robots.
    Hannan MW; Walker ID
    J Robot Syst; 2003 Feb; 20(2):45-63. PubMed ID: 14983840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional implications of supercontracting muscle in the chameleon tongue retractors.
    Herrel A; Meyers JJ; Aerts P; Nishikawa KC
    J Exp Biol; 2001 Nov; 204(Pt 21):3621-7. PubMed ID: 11719528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.