These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 21423364)

  • 21. Pre-dispositions and epigenetic inheritance in the Escherichia coli lactose operon bistable switch.
    Robert L; Paul G; Chen Y; Taddei F; Baigl D; Lindner AB
    Mol Syst Biol; 2010 Apr; 6():357. PubMed ID: 20393577
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of catabolite repression and inducer exclusion on the bistable behavior of the lac operon.
    Santillán M; Mackey MC
    Biophys J; 2004 Mar; 86(3):1282-92. PubMed ID: 14990461
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Selective Advantage of the
    Pinto C; Melo-Miranda R; Gordo I; Sousa A
    Front Microbiol; 2021; 12():709259. PubMed ID: 34367115
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bistability and hysteresis in epigenetic regulation of the lactose operon. Since Delbrück, a long series of ignored models.
    Laurent M; Charvin G; Guespin-Michel J
    Cell Mol Biol (Noisy-le-grand); 2005 Dec; 51(7):583-94. PubMed ID: 16359608
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regulation of methyl-beta-d-thiogalactopyranoside-6-phosphate accumulation in Streptococcus lactis by exclusion and expulsion mechanisms.
    Thompson J; Saier MH
    J Bacteriol; 1981 Jun; 146(3):885-94. PubMed ID: 6787017
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multistability in the lactose utilization network of Escherichia coli.
    Ozbudak EM; Thattai M; Lim HN; Shraiman BI; Van Oudenaarden A
    Nature; 2004 Feb; 427(6976):737-40. PubMed ID: 14973486
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A lipid requirement for induction of lactose transport in Escherichia coli.
    Fox CF
    Proc Natl Acad Sci U S A; 1969 Jul; 63(3):850-5. PubMed ID: 4899880
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantitative approaches to the study of bistability in the lac operon of Escherichia coli.
    Santillán M; Mackey MC
    J R Soc Interface; 2008 Aug; 5 Suppl 1(Suppl 1):S29-39. PubMed ID: 18426771
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ATP-dependent phosphorylation of serine-46 in the phosphocarrier protein HPr regulates lactose/H+ symport in Lactobacillus brevis.
    Ye JJ; Reizer J; Cui X; Saier MH
    Proc Natl Acad Sci U S A; 1994 Apr; 91(8):3102-6. PubMed ID: 8159711
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Feedback regulation in the lactose operon: a mathematical modeling study and comparison with experimental data.
    Yildirim N; Mackey MC
    Biophys J; 2003 May; 84(5):2841-51. PubMed ID: 12719218
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inhibition of the phosphoenolpyruvate:lactose phosphotransferase system and activation of a cytoplasmic sugar-phosphate phosphatase in Lactococcus lactis by ATP-dependent metabolite-activated phosphorylation of serine 46 in the phosphocarrier protein HPr.
    Ye JJ; Reizer J; Cui X; Saier MH
    J Biol Chem; 1994 Apr; 269(16):11837-44. PubMed ID: 8163482
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DNA looping increases the range of bistability in a stochastic model of the lac genetic switch.
    Earnest TM; Roberts E; Assaf M; Dahmen K; Luthey-Schulten Z
    Phys Biol; 2013 Apr; 10(2):026002. PubMed ID: 23406725
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Altered sugar selection and transport conferred by spontaneous point and deletion mutations in the lactose carrier of Escherichia coli.
    Shinnick SG; Varela MF
    J Membr Biol; 2002 Oct; 189(3):191-9. PubMed ID: 12395284
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulation of the glucose:H+ symporter by metabolite-activated ATP-dependent phosphorylation of HPr in Lactobacillus brevis.
    Ye JJ; Neal JW; Cui X; Reizer J; Saier MH
    J Bacteriol; 1994 Jun; 176(12):3484-92. PubMed ID: 8206825
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predicting the asymmetric response of a genetic switch to noise.
    Ochab-Marcinek A
    J Theor Biol; 2008 Sep; 254(1):37-44. PubMed ID: 18554612
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adaptive evolution of the lactose utilization network in experimentally evolved populations of Escherichia coli.
    Quan S; Ray JC; Kwota Z; Duong T; Balázsi G; Cooper TF; Monds RD
    PLoS Genet; 2012 Jan; 8(1):e1002444. PubMed ID: 22253602
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Glucose-lactose diauxie in Escherichia coli.
    Loomis WF; Magasanik B
    J Bacteriol; 1967 Apr; 93(4):1397-401. PubMed ID: 5340309
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Relatively slow stochastic gene-state switching in the presence of positive feedback significantly broadens the region of bimodality through stabilizing the uninduced phenotypic state.
    Ge H; Wu P; Qian H; Xie XS
    PLoS Comput Biol; 2018 Mar; 14(3):e1006051. PubMed ID: 29529037
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of Na+ and Li+ in thiomethylgalactoside transport by the melibiose transport system of Escherichia coli.
    Lopilato J; Tsuchiya T; Wilson TH
    J Bacteriol; 1978 Apr; 134(1):147-56. PubMed ID: 25882
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.