BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

558 related articles for article (PubMed ID: 21423490)

  • 1. Genetic controls balancing excitatory and inhibitory synaptogenesis in neurodevelopmental disorder models.
    Gatto CL; Broadie K
    Front Synaptic Neurosci; 2010; 2():4. PubMed ID: 21423490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic background mutations drive neural circuit hyperconnectivity in a fragile X syndrome model.
    Kennedy T; Rinker D; Broadie K
    BMC Biol; 2020 Jul; 18(1):94. PubMed ID: 32731855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Abnormalities of synaptogenesis in autism. Pathogenic and therapeutic implications].
    García-Peñas JJ; Domínguez-Carral J; Pereira-Bezanilla E
    Rev Neurol; 2012 Feb; 54 Suppl 1():S41-50. PubMed ID: 22374772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fragile X Mental Retardation Protein Regulates Activity-Dependent Membrane Trafficking and
    Sears JC; Broadie K
    Front Mol Neurosci; 2017; 10():440. PubMed ID: 29375303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impaired activity-dependent neural circuit assembly and refinement in autism spectrum disorder genetic models.
    Doll CA; Broadie K
    Front Cell Neurosci; 2014; 8():30. PubMed ID: 24570656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of Excitation/Inhibition Balance in a Hippocampal Circuit by Calcium Sensor Protein Regulation of Presynaptic Calcium Channels.
    Nanou E; Lee A; Catterall WA
    J Neurosci; 2018 May; 38(18):4430-4440. PubMed ID: 29654190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hyperexcitability and Homeostasis in Fragile X Syndrome.
    Liu X; Kumar V; Tsai NP; Auerbach BD
    Front Mol Neurosci; 2021; 14():805929. PubMed ID: 35069112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chloride imbalance in Fragile X syndrome.
    Miles KD; Doll CA
    Front Neurosci; 2022; 16():1008393. PubMed ID: 36312023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Astrocytic Ephrin-B1 Controls Excitatory-Inhibitory Balance in Developing Hippocampus.
    Nguyen AQ; Sutley S; Koeppen J; Mina K; Woodruff S; Hanna S; Vengala A; Hickmott PW; Obenaus A; Ethell IM
    J Neurosci; 2020 Sep; 40(36):6854-6871. PubMed ID: 32801156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced Excitatory Connectivity and Disturbed Sound Processing in the Auditory Brainstem of Fragile X Mice.
    Garcia-Pino E; Gessele N; Koch U
    J Neurosci; 2017 Aug; 37(31):7403-7419. PubMed ID: 28674175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of neural circuit formation by leucine-rich repeat proteins.
    de Wit J; Ghosh A
    Trends Neurosci; 2014 Oct; 37(10):539-50. PubMed ID: 25131359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ontogeny of biochemical, morphological and functional parameters of synaptogenesis in primary cultures of rat hippocampal and cortical neurons.
    Harrill JA; Chen H; Streifel KM; Yang D; Mundy WR; Lein PJ
    Mol Brain; 2015 Feb; 8():10. PubMed ID: 25757474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hyaluronan regulates synapse formation and function in developing neural networks.
    Wilson E; Knudson W; Newell-Litwa K
    Sci Rep; 2020 Oct; 10(1):16459. PubMed ID: 33020512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GABAB receptor-mediated feed-forward circuit dysfunction in the mouse model of fragile X syndrome.
    Wahlstrom-Helgren S; Klyachko VA
    J Physiol; 2015 Nov; 593(22):5009-24. PubMed ID: 26282581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fmr1 deficiency promotes age-dependent alterations in the cortical synaptic proteome.
    Tang B; Wang T; Wan H; Han L; Qin X; Zhang Y; Wang J; Yu C; Berton F; Francesconi W; Yates JR; Vanderklish PW; Liao L
    Proc Natl Acad Sci U S A; 2015 Aug; 112(34):E4697-706. PubMed ID: 26307763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SPARCL1 Promotes Excitatory But Not Inhibitory Synapse Formation and Function Independent of Neurexins and Neuroligins.
    Gan KJ; Südhof TC
    J Neurosci; 2020 Oct; 40(42):8088-8102. PubMed ID: 32973045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fragile X syndrome: the GABAergic system and circuit dysfunction.
    Paluszkiewicz SM; Martin BS; Huntsman MM
    Dev Neurosci; 2011; 33(5):349-64. PubMed ID: 21934270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EEA1 restores homeostatic synaptic plasticity in hippocampal neurons from Rett syndrome mice.
    Xu X; Pozzo-Miller L
    J Physiol; 2017 Aug; 595(16):5699-5712. PubMed ID: 28621434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fragile X syndrome.
    Hagerman RJ; Berry-Kravis E; Hazlett HC; Bailey DB; Moine H; Kooy RF; Tassone F; Gantois I; Sonenberg N; Mandel JL; Hagerman PJ
    Nat Rev Dis Primers; 2017 Sep; 3():17065. PubMed ID: 28960184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The state of synapses in fragile X syndrome.
    Pfeiffer BE; Huber KM
    Neuroscientist; 2009 Oct; 15(5):549-67. PubMed ID: 19325170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.