BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 21423494)

  • 1. Spike-timing dependent plasticity in inhibitory circuits.
    Lamsa KP; Kullmann DM; Woodin MA
    Front Synaptic Neurosci; 2010; 2():8. PubMed ID: 21423494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spike timing-dependent plasticity at GABAergic synapses in the ventral tegmental area.
    Kodangattil JN; Dacher M; Authement ME; Nugent FS
    J Physiol; 2013 Oct; 591(19):4699-710. PubMed ID: 23897235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spike-timing-dependent plasticity of neocortical excitatory synapses on inhibitory interneurons depends on target cell type.
    Lu JT; Li CY; Zhao JP; Poo MM; Zhang XH
    J Neurosci; 2007 Sep; 27(36):9711-20. PubMed ID: 17804631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GABAergic synaptic transmission regulates calcium influx during spike-timing dependent plasticity.
    Balena T; Acton BA; Woodin MA
    Front Synaptic Neurosci; 2010; 2():16. PubMed ID: 21423502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GABAergic activities control spike timing- and frequency-dependent long-term depression at hippocampal excitatory synapses.
    Nishiyama M; Togashi K; Aihara T; Hong K
    Front Synaptic Neurosci; 2010; 2():22. PubMed ID: 21423508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell type-specific, presynaptic LTP of inhibitory synapses on fast-spiking GABAergic neurons in the mouse visual cortex.
    Sarihi A; Mirnajafi-Zadeh J; Jiang B; Sohya K; Safari MS; Arami MK; Yanagawa Y; Tsumoto T
    J Neurosci; 2012 Sep; 32(38):13189-99. PubMed ID: 22993435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell-specific spike-timing-dependent plasticity in GABAergic and cholinergic interneurons in corticostriatal rat brain slices.
    Fino E; Deniau JM; Venance L
    J Physiol; 2008 Jan; 586(1):265-82. PubMed ID: 17974593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Association of mGluR-Dependent LTD of Excitatory Synapses with Endocannabinoid-Dependent LTD of Inhibitory Synapses Leads to EPSP to Spike Potentiation in CA1 Pyramidal Neurons.
    Kim HH; Park JM; Lee SH; Ho WK
    J Neurosci; 2019 Jan; 39(2):224-237. PubMed ID: 30459224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parvalbumin-Interneuron Output Synapses Show Spike-Timing-Dependent Plasticity that Contributes to Auditory Map Remodeling.
    Vickers ED; Clark C; Osypenko D; Fratzl A; Kochubey O; Bettler B; Schneggenburger R
    Neuron; 2018 Aug; 99(4):720-735.e6. PubMed ID: 30078579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinct Heterosynaptic Plasticity in Fast Spiking and Non-Fast-Spiking Inhibitory Neurons in Rat Visual Cortex.
    Chistiakova M; Ilin V; Roshchin M; Bannon N; Malyshev A; Kisvárday Z; Volgushev M
    J Neurosci; 2019 Aug; 39(35):6865-6878. PubMed ID: 31300522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. At immature mossy-fiber-CA3 synapses, correlated presynaptic and postsynaptic activity persistently enhances GABA release and network excitability via BDNF and cAMP-dependent PKA.
    Sivakumaran S; Mohajerani MH; Cherubini E
    J Neurosci; 2009 Feb; 29(8):2637-47. PubMed ID: 19244539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell type-specific long-term plasticity at glutamatergic synapses onto hippocampal interneurons expressing either parvalbumin or CB1 cannabinoid receptor.
    Nissen W; Szabo A; Somogyi J; Somogyi P; Lamsa KP
    J Neurosci; 2010 Jan; 30(4):1337-47. PubMed ID: 20107060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-term depression of inhibitory synaptic transmission induced by spike-timing dependent plasticity requires coactivation of endocannabinoid and muscarinic receptors.
    Ahumada J; Fernández de Sevilla D; Couve A; Buño W; Fuenzalida M
    Hippocampus; 2013 Dec; 23(12):1439-52. PubMed ID: 23966210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dopamine-enabled anti-Hebbian timing-dependent plasticity in prefrontal circuitry.
    Ruan H; Saur T; Yao WD
    Front Neural Circuits; 2014; 8():38. PubMed ID: 24795571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use-dependent shift from inhibitory to excitatory GABAA receptor action in SP-O interneurons in the rat hippocampal CA3 area.
    Lamsa K; Taira T
    J Neurophysiol; 2003 Sep; 90(3):1983-95. PubMed ID: 12750426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-Hebbian spike-timing-dependent plasticity in cerebellar circuits.
    Piochon C; Kruskal P; Maclean J; Hansel C
    Front Neural Circuits; 2012; 6():124. PubMed ID: 23335888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linking synaptic plasticity and spike output at excitatory and inhibitory synapses onto cerebellar Purkinje cells.
    Mittmann W; Häusser M
    J Neurosci; 2007 May; 27(21):5559-70. PubMed ID: 17522301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of inhibitory spike-timing-dependent plasticity on fast sparsely synchronized rhythms in a small-world neuronal network.
    Kim SY; Lim W
    Neural Netw; 2018 Oct; 106():50-66. PubMed ID: 30025272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The many forms and functions of long term plasticity at GABAergic synapses.
    Maffei A
    Neural Plast; 2011; 2011():254724. PubMed ID: 21789285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oscillation-Driven Spike-Timing Dependent Plasticity Allows Multiple Overlapping Pattern Recognition in Inhibitory Interneuron Networks.
    Garrido JA; Luque NR; Tolu S; D'Angelo E
    Int J Neural Syst; 2016 Aug; 26(5):1650020. PubMed ID: 27079422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.