BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 21423511)

  • 1. Voltage and Spike Timing Interact in STDP - A Unified Model.
    Clopath C; Gerstner W
    Front Synaptic Neurosci; 2010; 2():25. PubMed ID: 21423511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hebbian Spike-Timing Dependent Plasticity at the Cerebellar Input Stage.
    Sgritta M; Locatelli F; Soda T; Prestori F; D'Angelo EU
    J Neurosci; 2017 Mar; 37(11):2809-2823. PubMed ID: 28188217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Questions about STDP as a General Model of Synaptic Plasticity.
    Lisman J; Spruston N
    Front Synaptic Neurosci; 2010; 2():140. PubMed ID: 21423526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of inhibition and triplets of excitatory spikes modulates the NMDA-R-mediated synaptic plasticity in a computational model of spike timing-dependent plasticity.
    Cutsuridis V
    Hippocampus; 2013 Jan; 23(1):75-86. PubMed ID: 22851353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of synaptic plasticity by the coactivation of spatially distinct synaptic inputs in rat hippocampal CA1 apical dendrites.
    Kondo M; Kitajima T; Fujii S; Tsukada M; Aihara T
    Brain Res; 2013 Aug; 1526():1-14. PubMed ID: 23711890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bursts shape the NMDA-R mediated spike timing dependent plasticity curve: role of burst interspike interval and GABAergic inhibition.
    Cutsuridis V
    Cogn Neurodyn; 2012 Oct; 6(5):421-41. PubMed ID: 24082963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic Hebbian Cross-Correlation Learning Resolves the Spike Timing Dependent Plasticity Conundrum.
    Olde Scheper TV; Meredith RM; Mansvelder HD; van Pelt J; van Ooyen A
    Front Comput Neurosci; 2017; 11():119. PubMed ID: 29375358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning rules for spike timing-dependent plasticity depend on dendritic synapse location.
    Letzkus JJ; Kampa BM; Stuart GJ
    J Neurosci; 2006 Oct; 26(41):10420-9. PubMed ID: 17035526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dendritic synapse location and neocortical spike-timing-dependent plasticity.
    Froemke RC; Letzkus JJ; Kampa BM; Hang GB; Stuart GJ
    Front Synaptic Neurosci; 2010; 2():29. PubMed ID: 21423515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dendritic Voltage Recordings Explain Paradoxical Synaptic Plasticity: A Modeling Study.
    Meissner-Bernard C; Tsai MC; Logiaco L; Gerstner W
    Front Synaptic Neurosci; 2020; 12():585539. PubMed ID: 33224033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-Hebbian spike-timing-dependent plasticity in cerebellar circuits.
    Piochon C; Kruskal P; Maclean J; Hansel C
    Front Neural Circuits; 2012; 6():124. PubMed ID: 23335888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spike timing-dependent plasticity: a learning rule for dendritic integration in rat CA1 pyramidal neurons.
    Campanac E; Debanne D
    J Physiol; 2008 Feb; 586(3):779-93. PubMed ID: 18048448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GABA inhibition modulates NMDA-R mediated spike timing dependent plasticity (STDP) in a biophysical model.
    Cutsuridis V
    Neural Netw; 2011 Jan; 24(1):29-42. PubMed ID: 20832991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dendritic mechanisms controlling spike-timing-dependent synaptic plasticity.
    Kampa BM; Letzkus JJ; Stuart GJ
    Trends Neurosci; 2007 Sep; 30(9):456-63. PubMed ID: 17765330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spike timing dependent plasticity finds the start of repeating patterns in continuous spike trains.
    Masquelier T; Guyonneau R; Thorpe SJ
    PLoS One; 2008 Jan; 3(1):e1377. PubMed ID: 18167538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Local learning rules: predicted influence of dendritic location on synaptic modification in spike-timing-dependent plasticity.
    Saudargiene A; Porr B; Wörgötter F
    Biol Cybern; 2005 Feb; 92(2):128-38. PubMed ID: 15696313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interplay of the magnitude and time-course of postsynaptic Ca2+  concentration in producing spike timing-dependent plasticity.
    Carlson KD; Giordano N
    J Comput Neurosci; 2011 Jun; 30(3):747-58. PubMed ID: 21120688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Hypothetical Model Concerning How Spike-Timing-Dependent Plasticity Contributes to Neural Circuit Formation and Initiation of the Critical Period in Barrel Cortex.
    Kimura F; Itami C
    J Neurosci; 2019 May; 39(20):3784-3791. PubMed ID: 30877173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dopamine receptor activation is required for corticostriatal spike-timing-dependent plasticity.
    Pawlak V; Kerr JN
    J Neurosci; 2008 Mar; 28(10):2435-46. PubMed ID: 18322089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two coincidence detectors for spike timing-dependent plasticity in somatosensory cortex.
    Bender VA; Bender KJ; Brasier DJ; Feldman DE
    J Neurosci; 2006 Apr; 26(16):4166-77. PubMed ID: 16624937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.