These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 21423523)

  • 1. Spike-timing-dependent plasticity in the intact brain: counteracting spurious spike coincidences.
    Shulz DE; Jacob V
    Front Synaptic Neurosci; 2010; 2():137. PubMed ID: 21423523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spike timing-dependent plasticity alters electrosensory neuron synaptic strength in vitro but does not consistently predict changes in sensory tuning in vivo.
    Lube AJ; Ma X; Carlson BA
    J Neurophysiol; 2023 May; 129(5):1127-1144. PubMed ID: 37073981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endocannabinoids mediate bidirectional striatal spike-timing-dependent plasticity.
    Cui Y; Paillé V; Xu H; Genet S; Delord B; Fino E; Berry H; Venance L
    J Physiol; 2015 Jul; 593(13):2833-49. PubMed ID: 25873197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hebbian Spike-Timing Dependent Plasticity at the Cerebellar Input Stage.
    Sgritta M; Locatelli F; Soda T; Prestori F; D'Angelo EU
    J Neurosci; 2017 Mar; 37(11):2809-2823. PubMed ID: 28188217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spike timing-dependent plasticity: a Hebbian learning rule.
    Caporale N; Dan Y
    Annu Rev Neurosci; 2008; 31():25-46. PubMed ID: 18275283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robustness of STDP to spike timing jitter.
    Cui Y; Prokin I; Mendes A; Berry H; Venance L
    Sci Rep; 2018 May; 8(1):8139. PubMed ID: 29802357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Partial Breakdown of Input Specificity of STDP at Individual Synapses Promotes New Learning.
    Volgushev M; Chen JY; Ilin V; Goz R; Chistiakova M; Bazhenov M
    J Neurosci; 2016 Aug; 36(34):8842-55. PubMed ID: 27559167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectral analysis of input spike trains by spike-timing-dependent plasticity.
    Gilson M; Fukai T; Burkitt AN
    PLoS Comput Biol; 2012; 8(7):e1002584. PubMed ID: 22792056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity.
    Florian RV
    Neural Comput; 2007 Jun; 19(6):1468-502. PubMed ID: 17444757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A triplet spike-timing-dependent plasticity model generalizes the Bienenstock-Cooper-Munro rule to higher-order spatiotemporal correlations.
    Gjorgjieva J; Clopath C; Audet J; Pfister JP
    Proc Natl Acad Sci U S A; 2011 Nov; 108(48):19383-8. PubMed ID: 22080608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stability and Competition in Multi-spike Models of Spike-Timing Dependent Plasticity.
    Babadi B; Abbott LF
    PLoS Comput Biol; 2016 Mar; 12(3):e1004750. PubMed ID: 26939080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Does spike timing-dependent synaptic plasticity underlie memory formation?
    Letzkus JJ; Kampa BM; Stuart GJ
    Clin Exp Pharmacol Physiol; 2007 Oct; 34(10):1070-6. PubMed ID: 17714096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dopamine Receptor Activation Is Required for GABAergic Spike Timing-Dependent Plasticity in Response to Complex Spike Pairing in the Ventral Tegmental Area.
    Langlois LD; Dacher M; Nugent FS
    Front Synaptic Neurosci; 2018; 10():32. PubMed ID: 30297996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of synaptic plasticity by the coactivation of spatially distinct synaptic inputs in rat hippocampal CA1 apical dendrites.
    Kondo M; Kitajima T; Fujii S; Tsukada M; Aihara T
    Brain Res; 2013 Aug; 1526():1-14. PubMed ID: 23711890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spike timing-dependent plasticity and memory.
    Debanne D; Inglebert Y
    Curr Opin Neurobiol; 2023 Jun; 80():102707. PubMed ID: 36924615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Network-timing-dependent plasticity.
    Delattre V; Keller D; Perich M; Markram H; Muller EB
    Front Cell Neurosci; 2015; 9():220. PubMed ID: 26106298
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic Hebbian Cross-Correlation Learning Resolves the Spike Timing Dependent Plasticity Conundrum.
    Olde Scheper TV; Meredith RM; Mansvelder HD; van Pelt J; van Ooyen A
    Front Comput Neurosci; 2017; 11():119. PubMed ID: 29375358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Olfactory learning and spike timing dependent plasticity.
    Ito I; Ong RC; Raman B; Stopfer M
    Commun Integr Biol; 2008; 1(2):170-1. PubMed ID: 19704883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human synapses show a wide temporal window for spike-timing-dependent plasticity.
    Testa-Silva G; Verhoog MB; Goriounova NA; Loebel A; Hjorth J; Baayen JC; de Kock CP; Mansvelder HD
    Front Synaptic Neurosci; 2010; 2():12. PubMed ID: 21423498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental and computational aspects of signaling mechanisms of spike-timing-dependent plasticity.
    Urakubo H; Honda M; Tanaka K; Kuroda S
    HFSP J; 2009 Aug; 3(4):240-54. PubMed ID: 20119481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.