These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

413 related articles for article (PubMed ID: 21423532)

  • 1. Timing is not Everything: Neuromodulation Opens the STDP Gate.
    Pawlak V; Wickens JR; Kirkwood A; Kerr JN
    Front Synaptic Neurosci; 2010; 2():146. PubMed ID: 21423532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuromodulation of STDP through short-term changes in firing causality.
    Vogt SM; Hofmann UG
    Cogn Neurodyn; 2012 Aug; 6(4):353-66. PubMed ID: 24995051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hebbian Spike-Timing Dependent Plasticity at the Cerebellar Input Stage.
    Sgritta M; Locatelli F; Soda T; Prestori F; D'Angelo EU
    J Neurosci; 2017 Mar; 37(11):2809-2823. PubMed ID: 28188217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuromodulated Spike-Timing-Dependent Plasticity, and Theory of Three-Factor Learning Rules.
    Frémaux N; Gerstner W
    Front Neural Circuits; 2015; 9():85. PubMed ID: 26834568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity.
    Florian RV
    Neural Comput; 2007 Jun; 19(6):1468-502. PubMed ID: 17444757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of Spike-Timing Dependent Plasticity: Towards the Inclusion of a Third Factor in Computational Models.
    Foncelle A; Mendes A; Jędrzejewska-Szmek J; Valtcheva S; Berry H; Blackwell KT; Venance L
    Front Comput Neurosci; 2018; 12():49. PubMed ID: 30018546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequential neuromodulation of Hebbian plasticity offers mechanism for effective reward-based navigation.
    Brzosko Z; Zannone S; Schultz W; Clopath C; Paulsen O
    Elife; 2017 Jul; 6():. PubMed ID: 28691903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interplay of multiple pathways and activity-dependent rules in STDP.
    Vignoud G; Venance L; Touboul JD
    PLoS Comput Biol; 2018 Aug; 14(8):e1006184. PubMed ID: 30106953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dopamine Receptor Activation Is Required for GABAergic Spike Timing-Dependent Plasticity in Response to Complex Spike Pairing in the Ventral Tegmental Area.
    Langlois LD; Dacher M; Nugent FS
    Front Synaptic Neurosci; 2018; 10():32. PubMed ID: 30297996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinct dopaminergic spike-timing-dependent plasticity rules are suited to different functional roles.
    Sosis B; Rubin JE
    bioRxiv; 2024 Jun; ():. PubMed ID: 38979377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of synaptic plasticity by the coactivation of spatially distinct synaptic inputs in rat hippocampal CA1 apical dendrites.
    Kondo M; Kitajima T; Fujii S; Tsukada M; Aihara T
    Brain Res; 2013 Aug; 1526():1-14. PubMed ID: 23711890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic Hebbian Cross-Correlation Learning Resolves the Spike Timing Dependent Plasticity Conundrum.
    Olde Scheper TV; Meredith RM; Mansvelder HD; van Pelt J; van Ooyen A
    Front Comput Neurosci; 2017; 11():119. PubMed ID: 29375358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of inhibition and triplets of excitatory spikes modulates the NMDA-R-mediated synaptic plasticity in a computational model of spike timing-dependent plasticity.
    Cutsuridis V
    Hippocampus; 2013 Jan; 23(1):75-86. PubMed ID: 22851353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Does spike-timing-dependent synaptic plasticity couple or decouple neurons firing in synchrony?
    Knoblauch A; Hauser F; Gewaltig MO; Körner E; Palm G
    Front Comput Neurosci; 2012; 6():55. PubMed ID: 22936909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Triplet Spike Time-Dependent Plasticity in a Floating-Gate Synapse.
    Gopalakrishnan R; Basu A
    IEEE Trans Neural Netw Learn Syst; 2017 Apr; 28(4):. PubMed ID: 26841419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spike-timing-dependent plasticity in the intact brain: counteracting spurious spike coincidences.
    Shulz DE; Jacob V
    Front Synaptic Neurosci; 2010; 2():137. PubMed ID: 21423523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synaptic plasticity rules with physiological calcium levels.
    Inglebert Y; Aljadeff J; Brunel N; Debanne D
    Proc Natl Acad Sci U S A; 2020 Dec; 117(52):33639-33648. PubMed ID: 33328274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bursts shape the NMDA-R mediated spike timing dependent plasticity curve: role of burst interspike interval and GABAergic inhibition.
    Cutsuridis V
    Cogn Neurodyn; 2012 Oct; 6(5):421-41. PubMed ID: 24082963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Re-Examination of Hebbian-Covariance Rules and Spike Timing-Dependent Plasticity in Cat Visual Cortex in vivo.
    Frégnac Y; Pananceau M; René A; Huguet N; Marre O; Levy M; Shulz DE
    Front Synaptic Neurosci; 2010; 2():147. PubMed ID: 21423533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dopaminergic Neuromodulation of Spike Timing Dependent Plasticity in Mature Adult Rodent and Human Cortical Neurons.
    Louth EL; Jørgensen RL; Korshoej AR; Sørensen JCH; Capogna M
    Front Cell Neurosci; 2021; 15():668980. PubMed ID: 33967700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.