These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
405 related articles for article (PubMed ID: 21423604)
1. Oligosaccharide binding proteins from Bifidobacterium longum subsp. infantis reveal a preference for host glycans. Garrido D; Kim JH; German JB; Raybould HE; Mills DA PLoS One; 2011 Mar; 6(3):e17315. PubMed ID: 21423604 [TBL] [Abstract][Full Text] [Related]
2. Human Milk Oligosaccharide Utilization in Intestinal Bifidobacteria Is Governed by Global Transcriptional Regulator NagR. Arzamasov AA; Nakajima A; Sakanaka M; Ojima MN; Katayama T; Rodionov DA; Osterman AL mSystems; 2022 Oct; 7(5):e0034322. PubMed ID: 36094076 [TBL] [Abstract][Full Text] [Related]
3. Broad conservation of milk utilization genes in Bifidobacterium longum subsp. infantis as revealed by comparative genomic hybridization. LoCascio RG; Desai P; Sela DA; Weimer B; Mills DA Appl Environ Microbiol; 2010 Nov; 76(22):7373-81. PubMed ID: 20802066 [TBL] [Abstract][Full Text] [Related]
4. Bifidobacteria grown on human milk oligosaccharides downregulate the expression of inflammation-related genes in Caco-2 cells. Wickramasinghe S; Pacheco AR; Lemay DG; Mills DA BMC Microbiol; 2015 Aug; 15():172. PubMed ID: 26303932 [TBL] [Abstract][Full Text] [Related]
5. Proteomic analysis of Bifidobacterium longum subsp. infantis reveals the metabolic insight on consumption of prebiotics and host glycans. Kim JH; An HJ; Garrido D; German JB; Lebrilla CB; Mills DA PLoS One; 2013; 8(2):e57535. PubMed ID: 23469017 [TBL] [Abstract][Full Text] [Related]
6. A novel gene cluster allows preferential utilization of fucosylated milk oligosaccharides in Bifidobacterium longum subsp. longum SC596. Garrido D; Ruiz-Moyano S; Kirmiz N; Davis JC; Totten SM; Lemay DG; Ugalde JA; German JB; Lebrilla CB; Mills DA Sci Rep; 2016 Oct; 6():35045. PubMed ID: 27756904 [TBL] [Abstract][Full Text] [Related]
7. Bifidobacterium longum subsp. infantis uses two different β-galactosidases for selectively degrading type-1 and type-2 human milk oligosaccharides. Yoshida E; Sakurama H; Kiyohara M; Nakajima M; Kitaoka M; Ashida H; Hirose J; Katayama T; Yamamoto K; Kumagai H Glycobiology; 2012 Mar; 22(3):361-8. PubMed ID: 21926104 [TBL] [Abstract][Full Text] [Related]
8. Oligosaccharides Released from Milk Glycoproteins Are Selective Growth Substrates for Infant-Associated Bifidobacteria. Karav S; Le Parc A; Leite Nobrega de Moura Bell JM; Frese SA; Kirmiz N; Block DE; Barile D; Mills DA Appl Environ Microbiol; 2016 Jun; 82(12):3622-3630. PubMed ID: 27084007 [TBL] [Abstract][Full Text] [Related]
9. Endo-β-N-acetylglucosaminidases from infant gut-associated bifidobacteria release complex N-glycans from human milk glycoproteins. Garrido D; Nwosu C; Ruiz-Moyano S; Aldredge D; German JB; Lebrilla CB; Mills DA Mol Cell Proteomics; 2012 Sep; 11(9):775-85. PubMed ID: 22745059 [TBL] [Abstract][Full Text] [Related]
10. Release and utilization of N-acetyl-D-glucosamine from human milk oligosaccharides by Bifidobacterium longum subsp. infantis. Garrido D; Ruiz-Moyano S; Mills DA Anaerobe; 2012 Aug; 18(4):430-5. PubMed ID: 22579845 [TBL] [Abstract][Full Text] [Related]
11. Galacto- and Fructo-oligosaccharides Utilized for Growth by Cocultures of Bifidobacterial Species Characteristic of the Infant Gut. Sims IM; Tannock GW Appl Environ Microbiol; 2020 May; 86(11):. PubMed ID: 32220841 [TBL] [Abstract][Full Text] [Related]
12. Bifidobacteria isolated from infants and cultured on human milk oligosaccharides affect intestinal epithelial function. Chichlowski M; De Lartigue G; German JB; Raybould HE; Mills DA J Pediatr Gastroenterol Nutr; 2012 Sep; 55(3):321-7. PubMed ID: 22383026 [TBL] [Abstract][Full Text] [Related]
13. Variation in consumption of human milk oligosaccharides by infant gut-associated strains of Bifidobacterium breve. Ruiz-Moyano S; Totten SM; Garrido DA; Smilowitz JT; German JB; Lebrilla CB; Mills DA Appl Environ Microbiol; 2013 Oct; 79(19):6040-9. PubMed ID: 23892749 [TBL] [Abstract][Full Text] [Related]
14. Bifidobacterial enzymes involved in the metabolism of human milk oligosaccharides. Kitaoka M Adv Nutr; 2012 May; 3(3):422S-9S. PubMed ID: 22585921 [TBL] [Abstract][Full Text] [Related]
15. Distribution of in vitro fermentation ability of lacto-N-biose I, a major building block of human milk oligosaccharides, in bifidobacterial strains. Xiao JZ; Takahashi S; Nishimoto M; Odamaki T; Yaeshima T; Iwatsuki K; Kitaoka M Appl Environ Microbiol; 2010 Jan; 76(1):54-9. PubMed ID: 19854932 [TBL] [Abstract][Full Text] [Related]
16. Fucosyllactose and L-fucose utilization of infant Bifidobacterium longum and Bifidobacterium kashiwanohense. Bunesova V; Lacroix C; Schwab C BMC Microbiol; 2016 Oct; 16(1):248. PubMed ID: 27782805 [TBL] [Abstract][Full Text] [Related]
17. Bifidobacterium longum subspecies infantis: champion colonizer of the infant gut. Underwood MA; German JB; Lebrilla CB; Mills DA Pediatr Res; 2015 Jan; 77(1-2):229-35. PubMed ID: 25303277 [TBL] [Abstract][Full Text] [Related]
18. Genome-scale metabolic modeling of the human milk oligosaccharide utilization by Román L; Melis-Arcos F; Pröschle T; Saa PA; Garrido D mSystems; 2024 Mar; 9(3):e0071523. PubMed ID: 38363147 [No Abstract] [Full Text] [Related]