These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 21423812)
1. Conjugation to the cell-penetrating peptide TAT potentiates the photodynamic effect of carboxytetramethylrhodamine. Srinivasan D; Muthukrishnan N; Johnson GA; Erazo-Oliveras A; Lim J; Simanek EE; Pellois JP PLoS One; 2011 Mar; 6(3):e17732. PubMed ID: 21423812 [TBL] [Abstract][Full Text] [Related]
2. Photodamage of lipid bilayers by irradiation of a fluorescently labeled cell-penetrating peptide. Meerovich I; Muthukrishnan N; Johnson GA; Erazo-Oliveras A; Pellois JP Biochim Biophys Acta; 2014 Jan; 1840(1):507-15. PubMed ID: 24135456 [TBL] [Abstract][Full Text] [Related]
3. Synergy between cell-penetrating peptides and singlet oxygen generators leads to efficient photolysis of membranes. Muthukrishnan N; Johnson GA; Erazo-Oliveras A; Pellois JP Photochem Photobiol; 2013; 89(3):625-30. PubMed ID: 23278754 [TBL] [Abstract][Full Text] [Related]
4. The photolytic activity of poly-arginine cell penetrating peptides conjugated to carboxy-tetramethylrhodamine is modulated by arginine residue content and fluorophore conjugation site. Muthukrishnan N; Donovan S; Pellois JP Photochem Photobiol; 2014; 90(5):1034-42. PubMed ID: 24815901 [TBL] [Abstract][Full Text] [Related]
5. Endosomal Escape of Peptide-Photosensitizer Conjugates Is Affected by Amino Acid Sequences near the Photosensitizer. Miyoshi Y; Kadono M; Okazaki S; Nishimura A; Kitamatsu M; Watanabe K; Ohtsuki T Bioconjug Chem; 2020 Mar; 31(3):916-922. PubMed ID: 32027488 [TBL] [Abstract][Full Text] [Related]
6. TAT-mediated photochemical internalization results in cell killing by causing the release of calcium into the cytosol of cells. Muthukrishnan N; Johnson GA; Lim J; Simanek EE; Pellois JP Biochim Biophys Acta; 2012 Nov; 1820(11):1734-43. PubMed ID: 22771830 [TBL] [Abstract][Full Text] [Related]
7. Photoinduced Endosomal Escape Mechanism: A View from Photochemical Internalization Mediated by CPP-Photosensitizer Conjugates. Soe TH; Watanabe K; Ohtsuki T Molecules; 2020 Dec; 26(1):. PubMed ID: 33374732 [TBL] [Abstract][Full Text] [Related]
8. Impact of the Endosomal Escape Activity of Cell-Penetrating Peptides on the Endocytic Pathway. Kondow-McConaghy HM; Muthukrishnan N; Erazo-Oliveras A; Najjar K; Juliano RL; Pellois JP ACS Chem Biol; 2020 Sep; 15(9):2355-2363. PubMed ID: 32786263 [TBL] [Abstract][Full Text] [Related]
9. Generation of endosomolytic reagents by branching of cell-penetrating peptides: tools for the delivery of bioactive compounds to live cells in cis or trans. Angeles-Boza AM; Erazo-Oliveras A; Lee YJ; Pellois JP Bioconjug Chem; 2010 Dec; 21(12):2164-7. PubMed ID: 21043514 [TBL] [Abstract][Full Text] [Related]
10. A real-time assay for cell-penetrating peptide-mediated delivery of molecular cargos. Gentry SB; Nowak SJ; Ni X; Hill SA; Wade LR; Clark WR; Keelaghan AP; Morris DP; McMurry JL PLoS One; 2021; 16(9):e0254468. PubMed ID: 34473728 [TBL] [Abstract][Full Text] [Related]
11. Delivery of Proteins, Peptides or Cell-impermeable Small Molecules into Live Cells by Incubation with the Endosomolytic Reagent dfTAT. Najjar K; Erazo-Oliveras A; Pellois JP J Vis Exp; 2015 Sep; (103):. PubMed ID: 26382730 [TBL] [Abstract][Full Text] [Related]
12. Genetic, cellular, and structural characterization of the membrane potential-dependent cell-penetrating peptide translocation pore. Trofimenko E; Grasso G; Heulot M; Chevalier N; Deriu MA; Dubuis G; Arribat Y; Serulla M; Michel S; Vantomme G; Ory F; Dam LC; Puyal J; Amati F; Lüthi A; Danani A; Widmann C Elife; 2021 Oct; 10():. PubMed ID: 34713805 [TBL] [Abstract][Full Text] [Related]
14. Enhanced Delivery of Synthetic Labelled Ubiquitin into Live Cells by Using Next-Generation Ub-TAT Conjugates. Hameed DS; Sapmaz A; Gjonaj L; Merkx R; Ovaa H Chembiochem; 2018 Dec; 19(24):2553-2557. PubMed ID: 30351505 [TBL] [Abstract][Full Text] [Related]
15. Fluorophore labeling of a cell-penetrating peptide significantly alters the mode and degree of biomembrane interaction. Hedegaard SF; Derbas MS; Lind TK; Kasimova MR; Christensen MV; Michaelsen MH; Campbell RA; Jorgensen L; Franzyk H; Cárdenas M; Nielsen HM Sci Rep; 2018 Apr; 8(1):6327. PubMed ID: 29679078 [TBL] [Abstract][Full Text] [Related]
16. Photochemical internalisation: a novel drug delivery system. Selbo PK; Høgset A; Prasmickaite L; Berg K Tumour Biol; 2002; 23(2):103-12. PubMed ID: 12065848 [TBL] [Abstract][Full Text] [Related]
17. Discovery of a non-cationic cell penetrating peptide derived from membrane-interacting human proteins and its potential as a protein delivery carrier. Young Kim H; Young Yum S; Jang G; Ahn DR Sci Rep; 2015 Jun; 5():11719. PubMed ID: 26114640 [TBL] [Abstract][Full Text] [Related]
18. The role of tryptophans on the cellular uptake and membrane interaction of arginine-rich cell penetrating peptides. Jobin ML; Blanchet M; Henry S; Chaignepain S; Manigand C; Castano S; Lecomte S; Burlina F; Sagan S; Alves ID Biochim Biophys Acta; 2015 Feb; 1848(2):593-602. PubMed ID: 25445669 [TBL] [Abstract][Full Text] [Related]
19. An l- to d-Amino Acid Conversion in an Endosomolytic Analog of the Cell-penetrating Peptide TAT Influences Proteolytic Stability, Endocytic Uptake, and Endosomal Escape. Najjar K; Erazo-Oliveras A; Brock DJ; Wang TY; Pellois JP J Biol Chem; 2017 Jan; 292(3):847-861. PubMed ID: 27923812 [TBL] [Abstract][Full Text] [Related]
20. In Vitro Assays: Friends or Foes of Cell-Penetrating Peptides. Liu J; Afshar S Int J Mol Sci; 2020 Jul; 21(13):. PubMed ID: 32630650 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]