These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 21423853)

  • 1. Sensory Experience in Development Balances Excitation and Inhibition to Stabilize Frequency Tuning in Central Auditory Neurons.
    Seki K; Templeton T; Tremere LA; Pinaud R
    J Exp Neurosci; 2011 Feb; 2011(5):9-11. PubMed ID: 21423853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developmental sensory experience balances cortical excitation and inhibition.
    Dorrn AL; Yuan K; Barker AJ; Schreiner CE; Froemke RC
    Nature; 2010 Jun; 465(7300):932-6. PubMed ID: 20559387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of auditory cortical synaptic receptive fields.
    Froemke RC; Jones BJ
    Neurosci Biobehav Rev; 2011 Nov; 35(10):2105-13. PubMed ID: 21329722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increasing excitation versus decreasing inhibition in auditory cortex: consequences on the discrimination performance between communication sounds.
    Gaucher Q; Yger P; Edeline JM
    J Physiol; 2020 Sep; 598(17):3765-3785. PubMed ID: 32538485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fine-tuning of pre-balanced excitation and inhibition during auditory cortical development.
    Sun YJ; Wu GK; Liu BH; Li P; Zhou M; Xiao Z; Tao HW; Zhang LI
    Nature; 2010 Jun; 465(7300):927-31. PubMed ID: 20559386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fine Control of Sound Frequency Tuning and Frequency Discrimination Acuity by Synaptic Zinc Signaling in Mouse Auditory Cortex.
    Kumar M; Xiong S; Tzounopoulos T; Anderson CT
    J Neurosci; 2019 Jan; 39(5):854-865. PubMed ID: 30504277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lateral sharpening of cortical frequency tuning by approximately balanced inhibition.
    Wu GK; Arbuckle R; Liu BH; Tao HW; Zhang LI
    Neuron; 2008 Apr; 58(1):132-43. PubMed ID: 18400169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extra-classical tuning predicts stimulus-dependent receptive fields in auditory neurons.
    Schneider DM; Woolley SM
    J Neurosci; 2011 Aug; 31(33):11867-78. PubMed ID: 21849547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Network architecture, receptive fields, and neuromodulation: computational and functional implications of cholinergic modulation in primary auditory cortex.
    Soto G; Kopell N; Sen K
    J Neurophysiol; 2006 Dec; 96(6):2972-83. PubMed ID: 16899641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Corticofugal shaping of frequency tuning curves in the central nucleus of the inferior colliculus of mice.
    Yan J; Zhang Y; Ehret G
    J Neurophysiol; 2005 Jan; 93(1):71-83. PubMed ID: 15331615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Layer-specific excitation/inhibition balances during neuronal synchronization in the visual cortex.
    Adesnik H
    J Physiol; 2018 May; 596(9):1639-1657. PubMed ID: 29313982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complementary Inhibitory Weight Profiles Emerge from Plasticity and Allow Flexible Switching of Receptive Fields.
    Agnes EJ; Luppi AI; Vogels TP
    J Neurosci; 2020 Dec; 40(50):9634-9649. PubMed ID: 33168622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of spike latency tuning by thalamocortical circuits in auditory cortex.
    Zhou Y; Mesik L; Sun YJ; Liang F; Xiao Z; Tao HW; Zhang LI
    J Neurosci; 2012 Jul; 32(29):9969-80. PubMed ID: 22815511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Defining cortical frequency tuning with recurrent excitatory circuitry.
    Liu BH; Wu GK; Arbuckle R; Tao HW; Zhang LI
    Nat Neurosci; 2007 Dec; 10(12):1594-600. PubMed ID: 17994013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diversity in Excitation-Inhibition Mismatch Underlies Local Functional Heterogeneity in the Rat Auditory Cortex.
    Tao C; Zhang G; Zhou C; Wang L; Yan S; Tao HW; Zhang LI; Zhou Y; Xiong Y
    Cell Rep; 2017 Apr; 19(3):521-531. PubMed ID: 28423316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cortical Neural Activity Predicts Sensory Acuity Under Optogenetic Manipulation.
    Briguglio JJ; Aizenberg M; Balasubramanian V; Geffen MN
    J Neurosci; 2018 Feb; 38(8):2094-2105. PubMed ID: 29367406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sound-guided shaping of the receptive field in the mouse auditory cortex by basal forebrain activation.
    Yan J; Zhang Y
    Eur J Neurosci; 2005 Jan; 21(2):563-76. PubMed ID: 15673456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibitory plasticity balances excitation and inhibition in sensory pathways and memory networks.
    Vogels TP; Sprekeler H; Zenke F; Clopath C; Gerstner W
    Science; 2011 Dec; 334(6062):1569-73. PubMed ID: 22075724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A synaptic memory trace for cortical receptive field plasticity.
    Froemke RC; Merzenich MM; Schreiner CE
    Nature; 2007 Nov; 450(7168):425-9. PubMed ID: 18004384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A detailed model of the primary visual pathway in the cat: comparison of afferent excitatory and intracortical inhibitory connection schemes for orientation selectivity.
    Wörgötter F; Koch C
    J Neurosci; 1991 Jul; 11(7):1959-79. PubMed ID: 2066770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.