These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 21423952)
1. The relationship between redox enzyme activity and electrochemical potential-cellular and mechanistic implications from protein film electrochemistry. Gates AJ; Kemp GL; To CY; Mann J; Marritt SJ; Mayes AG; Richardson DJ; Butt JN Phys Chem Chem Phys; 2011 May; 13(17):7720-31. PubMed ID: 21423952 [TBL] [Abstract][Full Text] [Related]
2. Voltammetric characterization of the aerobic energy-dissipating nitrate reductase of Paracoccus pantotrophus: exploring the activity of a redox-balancing enzyme as a function of electrochemical potential. Gates AJ; Richardson DJ; Butt JN Biochem J; 2008 Jan; 409(1):159-68. PubMed ID: 17900239 [TBL] [Abstract][Full Text] [Related]
4. Enzyme-catalysed nitrate reduction-themes and variations as revealed by protein film voltammetry. Butt JN; Anderson LJ; Rubio LM; Richardson DJ; Flores E; Herrero A Bioelectrochemistry; 2002 May; 56(1-2):17-8. PubMed ID: 12009435 [TBL] [Abstract][Full Text] [Related]
5. Reassessing the strategies for trapping catalytic intermediates during nitrate reductase turnover. Fourmond V; Sabaty M; Arnoux P; Bertrand P; Pignol D; Léger C J Phys Chem B; 2010 Mar; 114(9):3341-7. PubMed ID: 20163092 [TBL] [Abstract][Full Text] [Related]
6. Substrate-dependent modulation of the enzymatic catalytic activity: reduction of nitrate, chlorate and perchlorate by respiratory nitrate reductase from Marinobacter hydrocarbonoclasticus 617. Marangon J; Paes de Sousa PM; Moura I; Brondino CD; Moura JJ; González PJ Biochim Biophys Acta; 2012 Jul; 1817(7):1072-82. PubMed ID: 22561116 [TBL] [Abstract][Full Text] [Related]
7. Electrocatalytic reduction of nitrate and selenate by NapAB. Gates AJ; Butler CS; Richardson DJ; Butt JN Biochem Soc Trans; 2011 Jan; 39(1):236-42. PubMed ID: 21265780 [TBL] [Abstract][Full Text] [Related]
8. Dependence of catalytic activity on driving force in solution assays and protein film voltammetry: insights from the comparison of nitrate reductase mutants. Fourmond V; Burlat B; Dementin S; Sabaty M; Arnoux P; Etienne E; Guigliarelli B; Bertrand P; Pignol D; Léger C Biochemistry; 2010 Mar; 49(11):2424-32. PubMed ID: 20146468 [TBL] [Abstract][Full Text] [Related]
9. Catalytic protein film voltammetry from a respiratory nitrate reductase provides evidence for complex electrochemical modulation of enzyme activity. Anderson LJ; Richardson DJ; Butt JN Biochemistry; 2001 Sep; 40(38):11294-307. PubMed ID: 11560477 [TBL] [Abstract][Full Text] [Related]
10. Effects of slow substrate binding and release in redox enzymes: theory and application to periplasmic nitrate reductase. Bertrand P; Frangioni B; Dementin S; Sabaty M; Arnoux P; Guigliarelli B; Pignol D; Léger C J Phys Chem B; 2007 Aug; 111(34):10300-11. PubMed ID: 17676894 [TBL] [Abstract][Full Text] [Related]
11. Fundamental insight into redox enzyme-based bioelectrocatalysis. Kano K Biosci Biotechnol Biochem; 2022 Jan; 86(2):141-156. PubMed ID: 34755834 [TBL] [Abstract][Full Text] [Related]
12. Regulation of the nap operon encoding the periplasmic nitrate reductase of Paracoccus pantotrophus: delineation of DNA sequences required for redox control. Ellington MJ; Fosdike WL; Sawers RG; Richardson DJ; Ferguson SJ Arch Microbiol; 2006 Jan; 184(5):298-304. PubMed ID: 16333617 [TBL] [Abstract][Full Text] [Related]
14. Kinetic studies of a ferredoxin-dependent cyanobacterial nitrate reductase. Srivastava AP; Knaff DB; Sétif P Biochemistry; 2014 Aug; 53(31):5092-101. PubMed ID: 25040124 [TBL] [Abstract][Full Text] [Related]
15. Reversible electrochemistry of fumarate reductase immobilized on an electrode surface. Direct voltammetric observations of redox centers and their participation in rapid catalytic electron transport. Sucheta A; Cammack R; Weiner J; Armstrong FA Biochemistry; 1993 May; 32(20):5455-65. PubMed ID: 8499449 [TBL] [Abstract][Full Text] [Related]
16. Electrochemistry of metalloproteins: protein film electrochemistry for the study of E. coli [NiFe]-hydrogenase-1. Evans RM; Armstrong FA Methods Mol Biol; 2014; 1122():73-94. PubMed ID: 24639254 [TBL] [Abstract][Full Text] [Related]
17. Correcting for electrocatalyst desorption and inactivation in chronoamperometry experiments. Fourmond V; Lautier T; Baffert C; Leroux F; Liebgott PP; Dementin S; Rousset M; Arnoux P; Pignol D; Meynial-Salles I; Soucaille P; Bertrand P; Léger C Anal Chem; 2009 Apr; 81(8):2962-8. PubMed ID: 19298055 [TBL] [Abstract][Full Text] [Related]
18. Enzyme electrokinetics: using protein film voltammetry to investigate redox enzymes and their mechanisms. Léger C; Elliott SJ; Hoke KR; Jeuken LJ; Jones AK; Armstrong FA Biochemistry; 2003 Jul; 42(29):8653-62. PubMed ID: 12873124 [TBL] [Abstract][Full Text] [Related]
19. Electrochemical determination of nitrate with nitrate reductase-immobilized electrodes under ambient air. Quan D; Shim JH; Kim JD; Park HS; Cha GS; Nam H Anal Chem; 2005 Jul; 77(14):4467-73. PubMed ID: 16013861 [TBL] [Abstract][Full Text] [Related]
20. Reductive activation in periplasmic nitrate reductase involves chemical modifications of the Mo-cofactor beyond the first coordination sphere of the metal ion. Jacques JG; Fourmond V; Arnoux P; Sabaty M; Etienne E; Grosse S; Biaso F; Bertrand P; Pignol D; Léger C; Guigliarelli B; Burlat B Biochim Biophys Acta; 2014 Feb; 1837(2):277-86. PubMed ID: 24212053 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]