These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 2142414)

  • 1. Non-PTS uptake and subsequent metabolism of glucose in Pediococcus halophilus as demonstrated with a double mutant defective in phosphoenolpyruvate:mannose phosphotransferase system and in phosphofructokinase.
    Abe K; Uchida K
    Arch Microbiol; 1990; 153(6):537-40. PubMed ID: 2142414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Release of glucose-mediated catabolite repression due to a defect in the membrane fraction of phosphoenolpyruvate: mannose phosphotransferase system in Pediococcus halophilus.
    Abe K; Uchida K
    Arch Microbiol; 1991; 155(6):517-20. PubMed ID: 1953293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlation between depression of catabolite control of xylose metabolism and a defect in the phosphoenolpyruvate:mannose phosphotransferase system in Pediococcus halophilus.
    Abe K; Uchida K
    J Bacteriol; 1989 Apr; 171(4):1793-800. PubMed ID: 2703460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective fermentation of xylose by a mutant of Tetragenococcus halophila defective in phosphoenolpyruvate:mannose phosphotransferase, phosphofructokinase, and glucokinase.
    Abe K; Higuchi T
    Biosci Biotechnol Biochem; 1998 Oct; 62(10):2062-4. PubMed ID: 9836445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for the involvement of proton motive force in the transport of glucose by a mutant of Streptococcus mutans strain DR0001 defective in glucose-phosphoenolpyruvate phosphotransferase activity.
    Hamilton IR; St Martin EJ
    Infect Immun; 1982 May; 36(2):567-75. PubMed ID: 6282753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Xylose transport insensitivity to catabolite inhibition by phosphoenolpyruvate:sugar phosphotransferase system in Tetragenococcus halophila.
    Abe K; Higuchi T; Yamato I
    Biosci Biotechnol Biochem; 1998 Sep; 62(9):1676-83. PubMed ID: 9805368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lactose metabolism in Streptococcus lactis: studies with a mutant lacking glucokinase and mannose-phosphotransferase activities.
    Thompson J; Chassy BM; Egan W
    J Bacteriol; 1985 Apr; 162(1):217-23. PubMed ID: 3920203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the individual glucose uptake systems of Lactococcus lactis: mannose-PTS, cellobiose-PTS and the novel GlcU permease.
    Castro R; Neves AR; Fonseca LL; Pool WA; Kok J; Kuipers OP; Santos H
    Mol Microbiol; 2009 Feb; 71(3):795-806. PubMed ID: 19054326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increasing succinic acid production using the PTS-independent glucose transport system in a Corynebacterium glutamicum PTS-defective mutant.
    Zhou Z; Wang C; Xu H; Chen Z; Cai H
    J Ind Microbiol Biotechnol; 2015 Jul; 42(7):1073-82. PubMed ID: 25952119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracellular phosphorylation of glucose analogs via the phosphoenolpyruvate: mannose-phosphotransferase system in Streptococcus lactis.
    Thompson J; Chassy BM
    J Bacteriol; 1985 Apr; 162(1):224-34. PubMed ID: 3920204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport of glucose and mannose by a common phosphoenolpyruvate-dependent phosphotransferase system in Streptococcus mutans GS5.
    Liberman ES; Bleiweis AS
    Infect Immun; 1984 Mar; 43(3):1106-9. PubMed ID: 6698606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glucose transport by a mutant of Streptococcus mutans unable to accumulate sugars via the phosphoenolpyruvate phosphotransferase system.
    Cvitkovitch DG; Boyd DA; Thevenot T; Hamilton IR
    J Bacteriol; 1995 May; 177(9):2251-8. PubMed ID: 7730250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The major PEP-phosphotransferase systems (PTSs) for glucose, mannose and cellobiose of Listeria monocytogenes, and their significance for extra- and intracellular growth.
    Stoll R; Goebel W
    Microbiology (Reading); 2010 Apr; 156(Pt 4):1069-1083. PubMed ID: 20056707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of an inducible enzyme II fructose and activation of a cryptic enzyme II glucose in glucose-grown cells of spontaneous mutants of Streptococcus salivarius lacking the low-molecular-mass form of IIIman, a component of the phosphoenolpyruvate:mannose phosphotransferase system.
    Bourassa S; Vadeboncoeur C
    J Gen Microbiol; 1992 Apr; 138(4):769-77. PubMed ID: 1534118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Phosphoenolpyruvate:hexose phosphotransferase systems in Lactobacillus species].
    Nagasaki H; Ito K; Matsuzaki S; Tanaka S
    Nihon Saikingaku Zasshi; 1992 Jul; 47(4):617-24. PubMed ID: 1433910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of the carbohydrate source on beta-glucan production and enzyme activities involved in sugar metabolism in Pediococcus parvulus 2.6.
    Velasco SE; Yebra MJ; Monedero V; Ibarburu I; DueƱas MT; Irastorza A
    Int J Food Microbiol; 2007 Apr; 115(3):325-34. PubMed ID: 17303279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport of mannose by an inducible phosphoenolpyruvate:fructose phosphotransferase system in Streptococcus salivarius.
    Pelletier G; Frenette M; Vadeboncoeur C
    Microbiology (Reading); 1994 Sep; 140 ( Pt 9)():2433-8. PubMed ID: 7952194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of Streptococcus mutans strains deficient in EIIAB Man of the sugar phosphotransferase system.
    Abranches J; Chen YY; Burne RA
    Appl Environ Microbiol; 2003 Aug; 69(8):4760-9. PubMed ID: 12902269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Properties of a Tn5 insertion mutant defective in the structural gene (fruA) of the fructose-specific phosphotransferase system of Rhodobacter capsulatus and cloning of the fru regulon.
    Daniels GA; Drews G; Saier MH
    J Bacteriol; 1988 Apr; 170(4):1698-703. PubMed ID: 2832374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological consequences of the complete loss of phosphoryl-transfer proteins HPr and FPr of the phosphoenolpyruvate:sugar phosphotransferase system and analysis of fructose (fru) operon expression in Salmonella typhimurium.
    Feldheim DA; Chin AM; Nierva CT; Feucht BU; Cao YW; Xu YF; Sutrina SL; Saier MH
    J Bacteriol; 1990 Sep; 172(9):5459-69. PubMed ID: 2203752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.