These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 21424232)
1. Solving a generalized distance geometry problem for protein structure determination. Sit A; Wu Z Bull Math Biol; 2011 Dec; 73(12):2809-36. PubMed ID: 21424232 [TBL] [Abstract][Full Text] [Related]
2. A geometric buildup algorithm for the solution of the distance geometry problem using least-squares approximation. Sit A; Wu Z; Yuan Y Bull Math Biol; 2009 Nov; 71(8):1914-33. PubMed ID: 19533250 [TBL] [Abstract][Full Text] [Related]
3. Refinement of NMR-determined protein structures with database derived mean-force potentials. Wu D; Jernigan R; Wu Z Proteins; 2007 Jul; 68(1):232-42. PubMed ID: 17387736 [TBL] [Abstract][Full Text] [Related]
4. Interaction energies between glycopeptide antibiotics and substrates in complexes determined by X-ray crystallography: application of a theoretical databank of aspherical atoms and a symmetry-adapted perturbation theory-based set of interatomic potentials. Li X; Volkov AV; Szalewicz K; Coppens P Acta Crystallogr D Biol Crystallogr; 2006 Jun; 62(Pt 6):639-47. PubMed ID: 16699191 [TBL] [Abstract][Full Text] [Related]
5. Combinatorial docking approach for structure prediction of large proteins and multi-molecular assemblies. Inbar Y; Benyamini H; Nussinov R; Wolfson HJ Phys Biol; 2005 Nov; 2(4):S156-65. PubMed ID: 16280621 [TBL] [Abstract][Full Text] [Related]
6. A large data set comparison of protein structures determined by crystallography and NMR: statistical test for structural differences and the effect of crystal packing. Andrec M; Snyder DA; Zhou Z; Young J; Montelione GT; Levy RM Proteins; 2007 Nov; 69(3):449-65. PubMed ID: 17623851 [TBL] [Abstract][Full Text] [Related]
7. Prediction of protein disorder. Dosztányi Z; Tompa P Methods Mol Biol; 2008; 426():103-15. PubMed ID: 18542859 [TBL] [Abstract][Full Text] [Related]
8. Comparing atomistic simulation data with the NMR experiment: how much can NOEs actually tell us? Zagrovic B; van Gunsteren WF Proteins; 2006 Apr; 63(1):210-8. PubMed ID: 16425239 [TBL] [Abstract][Full Text] [Related]
10. Automated protein structure determination from NMR spectra. López-Méndez B; Güntert P J Am Chem Soc; 2006 Oct; 128(40):13112-22. PubMed ID: 17017791 [TBL] [Abstract][Full Text] [Related]
11. An automated method for modeling proteins on known templates using distance geometry. Srinivasan S; March CJ; Sudarsanam S Protein Sci; 1993 Feb; 2(2):277-89. PubMed ID: 8443604 [TBL] [Abstract][Full Text] [Related]
13. All-atom contacts: a new approach to structure validation. Richardson JS Methods Biochem Anal; 2003; 44():305-20. PubMed ID: 12647392 [No Abstract] [Full Text] [Related]
14. Exploring the limits of precision and accuracy of protein structures determined by nuclear magnetic resonance spectroscopy. Clore GM; Robien MA; Gronenborn AM J Mol Biol; 1993 May; 231(1):82-102. PubMed ID: 8496968 [TBL] [Abstract][Full Text] [Related]
16. Protein-protein docking by simulating the process of association subject to biochemical constraints. Motiejunas D; Gabdoulline R; Wang T; Feldman-Salit A; Johann T; Winn PJ; Wade RC Proteins; 2008 Jun; 71(4):1955-69. PubMed ID: 18186463 [TBL] [Abstract][Full Text] [Related]
17. Bayesian estimation of NMR restraint potential and weight: a validation on a representative set of protein structures. Bernard A; Vranken WF; Bardiaux B; Nilges M; Malliavin TE Proteins; 2011 May; 79(5):1525-37. PubMed ID: 21365680 [TBL] [Abstract][Full Text] [Related]
18. Accurate NMR structures through minimization of an extended hybrid energy. Nilges M; Bernard A; Bardiaux B; Malliavin T; Habeck M; Rieping W Structure; 2008 Sep; 16(9):1305-12. PubMed ID: 18786394 [TBL] [Abstract][Full Text] [Related]