These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
284 related articles for article (PubMed ID: 21424448)
1. Nano "fly paper" technology for the capture of circulating tumor cells. Wang S; Owens GE; Tseng HR Methods Mol Biol; 2011; 726():141-50. PubMed ID: 21424448 [TBL] [Abstract][Full Text] [Related]
2. A microchip filter device incorporating slit arrays and 3-D flow for detection of circulating tumor cells using CAV1-EpCAM conjugated microbeads. Kim YJ; Koo GB; Lee JY; Moon HS; Kim DG; Lee DG; Lee JY; Oh JH; Park JM; Kim MS; Woo HG; Kim SI; Kang P; Choi W; Sim TS; Park WY; Lee JG; Kim YS Biomaterials; 2014 Aug; 35(26):7501-10. PubMed ID: 24917030 [TBL] [Abstract][Full Text] [Related]
3. Capture, release and culture of circulating tumor cells from pancreatic cancer patients using an enhanced mixing chip. Sheng W; Ogunwobi OO; Chen T; Zhang J; George TJ; Liu C; Fan ZH Lab Chip; 2014 Jan; 14(1):89-98. PubMed ID: 24220648 [TBL] [Abstract][Full Text] [Related]
4. Size-selective collection of circulating tumor cells using Vortex technology. Sollier E; Go DE; Che J; Gossett DR; O'Byrne S; Weaver WM; Kummer N; Rettig M; Goldman J; Nickols N; McCloskey S; Kulkarni RP; Di Carlo D Lab Chip; 2014 Jan; 14(1):63-77. PubMed ID: 24061411 [TBL] [Abstract][Full Text] [Related]
5. Nanoroughened adhesion-based capture of circulating tumor cells with heterogeneous expression and metastatic characteristics. Chen W; Allen SG; Reka AK; Qian W; Han S; Zhao J; Bao L; Keshamouni VG; Merajver SD; Fu J BMC Cancer; 2016 Aug; 16():614. PubMed ID: 27501846 [TBL] [Abstract][Full Text] [Related]
6. EpCAM-independent capture of circulating tumor cells with a 'universal CTC-chip'. Chikaishi Y; Yoneda K; Ohnaga T; Tanaka F Oncol Rep; 2017 Jan; 37(1):77-82. PubMed ID: 27840987 [TBL] [Abstract][Full Text] [Related]
7. Efficient capture and simple quantification of circulating tumor cells using quantum dots and magnetic beads. Min H; Jo SM; Kim HS Small; 2015 Jun; 11(21):2536-42. PubMed ID: 25630488 [TBL] [Abstract][Full Text] [Related]
8. Biotin-triggered decomposable immunomagnetic beads for capture and release of circulating tumor cells. Lu NN; Xie M; Wang J; Lv SW; Yi JS; Dong WG; Huang WH ACS Appl Mater Interfaces; 2015 Apr; 7(16):8817-26. PubMed ID: 25853336 [TBL] [Abstract][Full Text] [Related]
10. Microfluidic immunodetection of cancer cells via site-specific microcontact printing of antibodies on nanoporous surface. Ng E; Hoshino K; Zhang X Methods; 2013 Oct; 63(3):266-75. PubMed ID: 24012763 [TBL] [Abstract][Full Text] [Related]
11. Detection of EpCAM positive and negative circulating tumor cells in metastatic breast cancer patients. Königsberg R; Obermayr E; Bises G; Pfeiler G; Gneist M; Wrba F; de Santis M; Zeillinger R; Hudec M; Dittrich C Acta Oncol; 2011 Jun; 50(5):700-10. PubMed ID: 21261508 [TBL] [Abstract][Full Text] [Related]
12. Microfluidic immunocapture of circulating pancreatic cells using parallel EpCAM and MUC1 capture: characterization, optimization and downstream analysis. Thege FI; Lannin TB; Saha TN; Tsai S; Kochman ML; Hollingsworth MA; Rhim AD; Kirby BJ Lab Chip; 2014 May; 14(10):1775-84. PubMed ID: 24681997 [TBL] [Abstract][Full Text] [Related]
13. Improved detection by ensemble-decision aliquot ranking of circulating tumor cells with low numbers of a targeted surface antigen. Johnson ES; Anand RK; Chiu DT Anal Chem; 2015 Sep; 87(18):9389-95. PubMed ID: 26302174 [TBL] [Abstract][Full Text] [Related]
14. High-Efficiency Capture of Individual and Cluster of Circulating Tumor Cells by a Microchip Embedded with Three-Dimensional Poly(dimethylsiloxane) Scaffold. Cheng SB; Xie M; Xu JQ; Wang J; Lv SW; Guo S; Shu Y; Wang M; Dong WG; Huang WH Anal Chem; 2016 Jul; 88(13):6773-80. PubMed ID: 27291464 [TBL] [Abstract][Full Text] [Related]
15. Highly efficient capture and harvest of circulating tumor cells on a microfluidic chip integrated with herringbone and micropost arrays. Xue P; Wu Y; Guo J; Kang Y Biomed Microdevices; 2015 Apr; 17(2):39. PubMed ID: 25749640 [TBL] [Abstract][Full Text] [Related]
16. Two-stage microfluidic chip for selective isolation of circulating tumor cells (CTCs). Hyun KA; Lee TY; Lee SH; Jung HI Biosens Bioelectron; 2015 May; 67():86-92. PubMed ID: 25060749 [TBL] [Abstract][Full Text] [Related]
17. Capture and release of cancer cells based on sacrificeable transparent MnO2 nanospheres thin film. Huang Q; Chen B; He R; He Z; Cai B; Xu J; Qian W; Chan HL; Liu W; Guo S; Zhao XZ; Yuan J Adv Healthc Mater; 2014 Sep; 3(9):1420-5. PubMed ID: 24652776 [TBL] [Abstract][Full Text] [Related]
18. Isolation and mutational analysis of circulating tumor cells from lung cancer patients with magnetic sifters and biochips. Earhart CM; Hughes CE; Gaster RS; Ooi CC; Wilson RJ; Zhou LY; Humke EW; Xu L; Wong DJ; Willingham SB; Schwartz EJ; Weissman IL; Jeffrey SS; Neal JW; Rohatgi R; Wakelee HA; Wang SX Lab Chip; 2014 Jan; 14(1):78-88. PubMed ID: 23969419 [TBL] [Abstract][Full Text] [Related]
19. Spiral shape microfluidic channel for selective isolating of heterogenic circulating tumor cells. Kwak B; Lee J; Lee J; Kim HS; Kang S; Lee Y Biosens Bioelectron; 2018 Mar; 101():311-316. PubMed ID: 29055574 [TBL] [Abstract][Full Text] [Related]
20. SSA-MOA: a novel CTC isolation platform using selective size amplification (SSA) and a multi-obstacle architecture (MOA) filter. Kim MS; Sim TS; Kim YJ; Kim SS; Jeong H; Park JM; Moon HS; Kim SI; Gurel O; Lee SS; Lee JG; Park JC Lab Chip; 2012 Aug; 12(16):2874-80. PubMed ID: 22684249 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]