These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 21424517)

  • 1. Contribution of inter-subunit interactions to the thermostability of Pyrococcus furiosus citrate synthase.
    Moore V; Kanu A; Byron O; Campbell G; Danson MJ; Hough DW; Crennell SJ
    Extremophiles; 2011 May; 15(3):327-36. PubMed ID: 21424517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermostability and thermoactivity of citrate synthases from the thermophilic and hyperthermophilic archaea, Thermoplasma acidophilum and Pyrococcus furiosus.
    Arnott MA; Michael RA; Thompson CR; Hough DW; Danson MJ
    J Mol Biol; 2000 Dec; 304(4):657-68. PubMed ID: 11099387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Denaturation of an extremely stable hyperthermophilic protein occurs via a dimeric intermediate.
    Powers SL; Robinson CR; Robinson AS
    Extremophiles; 2007 Jan; 11(1):179-89. PubMed ID: 17072686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Citrate synthase from Thermus aquaticus: a thermostable bacterial enzyme with a five-membered inter-subunit ionic network.
    Nordberg Karlsson E; Crennell SJ; Higgins C; Nawaz S; Yeoh L; Hough DW; Danson MJ
    Extremophiles; 2003 Feb; 7(1):9-16. PubMed ID: 12579375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monomer structure of a hyperthermophilic β-glucosidase mutant forming a dodecameric structure in the crystal form.
    Nakabayashi M; Kataoka M; Watanabe M; Ishikawa K
    Acta Crystallogr F Struct Biol Commun; 2014 Jul; 70(Pt 7):854-9. PubMed ID: 25005077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermostabilizing mutations preferentially occur at structural weak spots with a high mutation ratio.
    Rathi PC; Radestock S; Gohlke H
    J Biotechnol; 2012 Jun; 159(3):135-44. PubMed ID: 22326626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cold-active citrate synthase: mutagenesis of active-site residues.
    Gerike U; Danson MJ; Hough DW
    Protein Eng; 2001 Sep; 14(9):655-61. PubMed ID: 11707611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extremely stable indole-3-glycerol-phosphate synthase from hyperthermophilic archaeon Pyrococcus furiosus.
    Arif M; Rashid N; Perveen S; Bashir Q; Akhtar M
    Extremophiles; 2019 Jan; 23(1):69-77. PubMed ID: 30264228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-subunit assembly of the Pyrococcus furiosus small heat shock protein is essential for cellular protection at high temperature.
    Laksanalamai P; Jiemjit A; Bu Z; Maeder DL; Robb FT
    Extremophiles; 2003 Feb; 7(1):79-83. PubMed ID: 12579383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amino acid substitutions in the subunit interface enhancing thermostability of Thermoplasma acidophilum citrate synthase.
    Erduran I; Kocabiyik S
    Biochem Biophys Res Commun; 1998 Aug; 249(2):566-71. PubMed ID: 9712738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different roles of electrostatics in heat and in cold: adaptation by citrate synthase.
    Kumar S; Nussinov R
    Chembiochem; 2004 Mar; 5(3):280-90. PubMed ID: 14997520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The unusually slow unfolding rate causes the high stability of pyrrolidone carboxyl peptidase from a hyperthermophile, Pyrococcus furiosus: equilibrium and kinetic studies of guanidine hydrochloride-induced unfolding and refolding.
    Ogasahara K; Nakamura M; Nakura S; Tsunasawa S; Kato I; Yoshimoto T; Yutani K
    Biochemistry; 1998 Dec; 37(50):17537-44. PubMed ID: 9860869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Four Inserts within the Catalytic Domain Confer Extra Stability and Activity to Hyperthermostable Pyrolysin from Pyrococcus furiosus.
    Gao X; Zeng J; Yi H; Zhang F; Tang B; Tang XF
    Appl Environ Microbiol; 2017 Mar; 83(5):. PubMed ID: 28003199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Citrate synthase from the hyperthermophilic Archaeon, Pyrococcus furiosus.
    Muir JM; Russell RJ; Hough DW; Danson MJ
    Protein Eng; 1995 Jun; 8(6):583-92. PubMed ID: 8532683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Slow irreversible unfolding of Pyrococcus furiosus triosephosphate isomerase: separation and quantitation of conformers through a novel electrophoretic approach.
    Mukherjee S; Sharma S; Kumar S; Guptasarma P
    Anal Biochem; 2005 Dec; 347(1):49-59. PubMed ID: 16236239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The crystal structure of citrate synthase from the hyperthermophilic archaeon pyrococcus furiosus at 1.9 A resolution,
    Russell RJ; Ferguson JM; Hough DW; Danson MJ; Taylor GL
    Biochemistry; 1997 Aug; 36(33):9983-94. PubMed ID: 9254593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural adaptations of the cold-active citrate synthase from an Antarctic bacterium.
    Russell RJ; Gerike U; Danson MJ; Hough DW; Taylor GL
    Structure; 1998 Mar; 6(3):351-61. PubMed ID: 9551556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An exceptionally stable Group II chaperonin from the hyperthermophile Pyrococcus furiosus.
    Luo H; Laksanalamai P; Robb FT
    Arch Biochem Biophys; 2009 Jun; 486(1):12-8. PubMed ID: 19298788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Citrate synthase proteins in extremophilic organisms: studies within a structure-based model.
    Różycki B; Cieplak M
    J Chem Phys; 2014 Dec; 141(23):235102. PubMed ID: 25527961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving the catalytic activity of hyperthermophilic Pyrococcus prolidases for detoxification of organophosphorus nerve agents over a broad range of temperatures.
    Theriot CM; Du X; Tove SR; Grunden AM
    Appl Microbiol Biotechnol; 2010 Aug; 87(5):1715-26. PubMed ID: 20422176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.