These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Increased susceptibility of beta-glucosidase from the hyperthermophile Pyrococcus furiosus to thermal inactivation at higher pressures. Bruins ME; Meersman F; Janssen AE; Heremans K; Boom RM FEBS J; 2009 Jan; 276(1):109-17. PubMed ID: 19019084 [TBL] [Abstract][Full Text] [Related]
23. Biochemical characterization of a thermostable adenosylmethionine synthetase from the archaeon Pyrococcus furiosus with high catalytic power. Porcelli M; Ilisso CP; De Leo E; Cacciapuoti G Appl Biochem Biotechnol; 2015 Mar; 175(6):2916-33. PubMed ID: 25577347 [TBL] [Abstract][Full Text] [Related]
24. Hyperthermophile protein behavior: partially-structured conformations of Pyrococcus furiosus rubredoxin monomers generated through forced cold-denaturation and refolding. Chandrayan SK; Prakash S; Ahmed S; Guptasarma P PLoS One; 2014; 9(3):e80014. PubMed ID: 24603413 [TBL] [Abstract][Full Text] [Related]
25. A novel domain arrangement in a monomeric cyclodextrin-hydrolyzing enzyme from the hyperthermophile Pyrococcus furiosus. Park JT; Song HN; Jung TY; Lee MH; Park SG; Woo EJ; Park KH Biochim Biophys Acta; 2013 Jan; 1834(1):380-6. PubMed ID: 22902546 [TBL] [Abstract][Full Text] [Related]
26. Novel structure and redox chemistry of the prosthetic groups of the iron-sulfur flavoprotein sulfide dehydrogenase from Pyrococcus furiosus; evidence for a [2Fe-2S] cluster with Asp(Cys)3 ligands. Hagen WR; Silva PJ; Amorim MA; Hagedoorn PL; Wassink H; Haaker H; Robb FT J Biol Inorg Chem; 2000 Aug; 5(4):527-34. PubMed ID: 10968624 [TBL] [Abstract][Full Text] [Related]
27. Atomic resolution of the crystal structure of the hyperthermophilic family 12 endocellulase and stabilizing role of the DxDxDG calcium-binding motif in Pyrococcus furiosus. Kim HW; Kataoka M; Ishikawa K FEBS Lett; 2012 Apr; 586(7):1009-13. PubMed ID: 22569255 [TBL] [Abstract][Full Text] [Related]
28. High temperature and pressure influence the interdomain orientation of Nip7 proteins from P. abyssi and P. furiosus: MD simulations. Medvedev KE; Kolchanov NA; Afonnikov DA J Biomol Struct Dyn; 2018 Jan; 36(1):68-82. PubMed ID: 27924686 [TBL] [Abstract][Full Text] [Related]
29. X-ray crystalline structures of pyrrolidone carboxyl peptidase from a hyperthermophile, Pyrococcus furiosus, and its cys-free mutant. Tanaka H; Chinami M; Mizushima T; Ogasahara K; Ota M; Tsukihara T; Yutani K J Biochem; 2001 Jul; 130(1):107-18. PubMed ID: 11432786 [TBL] [Abstract][Full Text] [Related]
30. Destabilization of the homotetrameric assembly of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from the hyperthermophile Pyrococcus furiosus enhances enzymatic activity. Nazmi AR; Schofield LR; Dobson RC; Jameson GB; Parker EJ J Mol Biol; 2014 Feb; 426(3):656-73. PubMed ID: 24239948 [TBL] [Abstract][Full Text] [Related]
31. Kinetic study of the thermal denaturation of a hyperthermostable extracellular α-amylase from Pyrococcus furiosus. Brown I; Dafforn TR; Fryer PJ; Cox PW Biochim Biophys Acta; 2013 Dec; 1834(12):2600-5. PubMed ID: 24063888 [TBL] [Abstract][Full Text] [Related]
32. Expression, purification, and characterization of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase from Pyrococcus furiosus. Schofield LR; Patchett ML; Parker EJ Protein Expr Purif; 2004 Mar; 34(1):17-27. PubMed ID: 14766297 [TBL] [Abstract][Full Text] [Related]
33. Crystal structure of the archaeal heat shock regulator from Pyrococcus furiosus: a molecular chimera representing eukaryal and bacterial features. Liu W; Vierke G; Wenke AK; Thomm M; Ladenstein R J Mol Biol; 2007 Jun; 369(2):474-88. PubMed ID: 17434531 [TBL] [Abstract][Full Text] [Related]
34. Stabilization of Taq DNA polymerase at high temperature by protein folding pathways from a hyperthermophilic archaeon, Pyrococcus furiosus. Laksanalamai P; Pavlov AR; Slesarev AI; Robb FT Biotechnol Bioeng; 2006 Jan; 93(1):1-5. PubMed ID: 16299772 [TBL] [Abstract][Full Text] [Related]
35. Effects of metal ions on stability and activity of hyperthermophilic pyrolysin and further stabilization of this enzyme by modification of a Ca2+-binding site. Zeng J; Gao X; Dai Z; Tang B; Tang XF Appl Environ Microbiol; 2014 May; 80(9):2763-72. PubMed ID: 24561589 [TBL] [Abstract][Full Text] [Related]
36. The 1.5 A resolution crystal structure of the carbamate kinase-like carbamoyl phosphate synthetase from the hyperthermophilic Archaeon pyrococcus furiosus, bound to ADP, confirms that this thermostable enzyme is a carbamate kinase, and provides insight into substrate binding and stability in carbamate kinases. Ramón-Maiques S; Marina A; Uriarte M; Fita I; Rubio V J Mol Biol; 2000 Jun; 299(2):463-76. PubMed ID: 10860751 [TBL] [Abstract][Full Text] [Related]
37. The key to the extraordinary thermal stability of P. furiosus holo-rubredoxin: iron binding-guided packing of a core aromatic cluster responsible for high kinetic stability of the native structure. Prakash S; Sundd M; Guptasarma P PLoS One; 2014; 9(3):e89703. PubMed ID: 24603898 [TBL] [Abstract][Full Text] [Related]
38. Crystal structure of a Cas6 paralogous protein from Pyrococcus furiosus. Park HM; Shin M; Sun J; Kim GS; Lee YC; Park JH; Kim BY; Kim JS Proteins; 2012 Jul; 80(7):1895-900. PubMed ID: 22447673 [No Abstract] [Full Text] [Related]
39. Characterization and Low-Resolution Structure of an Extremely Thermostable Esterase of Potential Biotechnological Interest from Pyrococcus furiosus. Mandelli F; Gonçalves TA; Gandin CA; Oliveira AC; Oliveira Neto M; Squina FM Mol Biotechnol; 2016 Nov; 58(11):757-766. PubMed ID: 27665110 [TBL] [Abstract][Full Text] [Related]
40. Entropic stabilization of the tryptophan synthase alpha-subunit from a hyperthermophile, Pyrococcus furiosus. X-ray analysis and calorimetry. Yamagata Y; Ogasahara K; Hioki Y; Lee SJ; Nakagawa A; Nakamura H; Ishida M; Kuramitsu S; Yutani K J Biol Chem; 2001 Apr; 276(14):11062-71. PubMed ID: 11118452 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]