BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 21425173)

  • 21. FluoMEP: a new genotyping method combining the advantages of randomly amplified polymorphic DNA and amplified fragment length polymorphism.
    Chang A; Liew WC; Chuah A; Lim Z; Lin Q; Orban L
    Electrophoresis; 2007 Feb; 28(4):525-34. PubMed ID: 17304486
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sequence analysis of DNA randomly amplified from the Saccharomyces cerevisiae genome.
    McGrath A; Higgins DG; McCarthy TV
    Mol Cell Probes; 1998 Dec; 12(6):397-405. PubMed ID: 9843657
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A modified mini-primer set for analyzing mitochondrial DNA control region sequences from highly degraded forensic samples.
    Lee HY; Kim NY; Park MJ; Yang WI; Shin KJ
    Biotechniques; 2008 Apr; 44(4):555-6, 558. PubMed ID: 18476821
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A comparative analysis of numt evolution in human and chimpanzee.
    Hazkani-Covo E; Graur D
    Mol Biol Evol; 2007 Jan; 24(1):13-8. PubMed ID: 17056643
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mini-midi-mito: adapting the amplification and sequencing strategy of mtDNA to the degradation state of crime scene samples.
    Berger C; Parson W
    Forensic Sci Int Genet; 2009 Jun; 3(3):149-53. PubMed ID: 19414161
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improved MtDNA sequence analysis of forensic remains using a "mini-primer set" amplification strategy.
    Gabriel MN; Huffine EF; Ryan JH; Holland MM; Parsons TJ
    J Forensic Sci; 2001 Mar; 46(2):247-53. PubMed ID: 11305426
    [TBL] [Abstract][Full Text] [Related]  

  • 27. methBLAST and methPrimerDB: web-tools for PCR based methylation analysis.
    Pattyn F; Hoebeeck J; Robbrecht P; Michels E; De Paepe A; Bottu G; Coornaert D; Herzog R; Speleman F; Vandesompele J
    BMC Bioinformatics; 2006 Nov; 7():496. PubMed ID: 17094804
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Use of a PCR-based approach for sequencing whole mitochondrial genomes of insects: two examples (cockroach and dragonfly) based on the method developed for decapod crustaceans.
    Yamauchi MM; Miya MU; Nishida M
    Insect Mol Biol; 2004 Aug; 13(4):435-42. PubMed ID: 15271216
    [TBL] [Abstract][Full Text] [Related]  

  • 29. hybseek: pathogen primer design tool for diagnostic multi-analyte assays.
    Frech C; Breuer K; Ronacher B; Kern T; Sohn C; Gebauer G
    Comput Methods Programs Biomed; 2009 May; 94(2):152-60. PubMed ID: 19201047
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Distribution of nuclear mitochondrial DNA in cattle nuclear genome.
    Liu Y; Zhao X
    J Anim Breed Genet; 2007 Oct; 124(5):264-8. PubMed ID: 17868078
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The complete mitochondrial genome of the rayfish Raja porosa (Chondrichthyes, Rajidae).
    Kim IC; Jung SO; Lee YM; Lee CJ; Park JK; Lee JS
    DNA Seq; 2005 Jun; 16(3):187-94. PubMed ID: 16147874
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel PCR technique using Alu-specific primers to identify unknown flanking sequences from the human genome.
    Minami M; Poussin K; Bréchot C; Paterlini P
    Genomics; 1995 Sep; 29(2):403-8. PubMed ID: 8666388
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spiking of contemporary human template DNA with ancient DNA extracts induces mutations under PCR and generates nonauthentic mitochondrial sequences.
    Pusch CM; Bachmann L
    Mol Biol Evol; 2004 May; 21(5):957-64. PubMed ID: 15014140
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Automating the identification of DNA variations using quality-based fluorescence re-sequencing: analysis of the human mitochondrial genome.
    Rieder MJ; Taylor SL; Tobe VO; Nickerson DA
    Nucleic Acids Res; 1998 Feb; 26(4):967-73. PubMed ID: 9461455
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Time for a standardized system of reporting sites of genomic methylation.
    Saffery R; Gordon L
    Genome Biol; 2015 Apr; 16(1):85. PubMed ID: 25924664
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of primer proximity to a difficult-to-sequence region on read length and sequence quality.
    Kieleczawa J
    J Biomol Tech; 2008 Dec; 19(5):335-41. PubMed ID: 19183797
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sequencing strategy for the whole mitochondrial genome resulting in high quality sequences.
    Fendt L; Zimmermann B; Daniaux M; Parson W
    BMC Genomics; 2009 Mar; 10():139. PubMed ID: 19331681
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Classification of genomic sequences via wavelet variance and a self-organizing map with an application to mitochondrial DNA.
    Jach AE; Marín JM
    Stat Appl Genet Mol Biol; 2010; 9():Article27. PubMed ID: 20678075
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimization of primer-specific filter metrics for the assessment of mitochondrial DNA sequence data.
    Curtis PC; Thomas JL; Phillips NR; Roby RK
    Mitochondrial DNA; 2010 Dec; 21(6):191-7. PubMed ID: 21171863
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Clarity against the odds: standards for describing DNA sequence variants.
    Suthers G
    Pathology; 2013 Feb; 45(2):101-3. PubMed ID: 23250040
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.