These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 21425293)

  • 1. Combination of the CHARMM27 force field with united-atom lipid force fields.
    Sapay N; Tieleman DP
    J Comput Chem; 2011 May; 32(7):1400-10. PubMed ID: 21425293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Force field dependence of phospholipid headgroup and acyl chain properties: comparative molecular dynamics simulations of DMPC bilayers.
    Prakash P; Sankararamakrishnan R
    J Comput Chem; 2010 Jan; 31(2):266-77. PubMed ID: 19475632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane protein simulations with a united-atom lipid and all-atom protein model: lipid-protein interactions, side chain transfer free energies and model proteins.
    Tieleman DP; Maccallum JL; Ash WL; Kandt C; Xu Z; Monticelli L
    J Phys Condens Matter; 2006 Jul; 18(28):S1221-34. PubMed ID: 21690838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of protein force fields for molecular dynamics simulations.
    Guvench O; MacKerell AD
    Methods Mol Biol; 2008; 443():63-88. PubMed ID: 18446282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SwissParam: a fast force field generation tool for small organic molecules.
    Zoete V; Cuendet MA; Grosdidier A; Michielin O
    J Comput Chem; 2011 Aug; 32(11):2359-68. PubMed ID: 21541964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New-generation amber united-atom force field.
    Yang L; Tan CH; Hsieh MJ; Wang J; Duan Y; Cieplak P; Caldwell J; Kollman PA; Luo R
    J Phys Chem B; 2006 Jul; 110(26):13166-76. PubMed ID: 16805629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Force field parameters for the simulation of modified histone tails.
    Grauffel C; Stote RH; Dejaegere A
    J Comput Chem; 2010 Oct; 31(13):2434-51. PubMed ID: 20652987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing atomistic and coarse-grained force fields for protein-lipid interactions: the formidable challenge of an ionizable side chain in a membrane.
    Vorobyov I; Li L; Allen TW
    J Phys Chem B; 2008 Aug; 112(32):9588-602. PubMed ID: 18636764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and dynamics of phospholipid bilayers using recently developed general all-atom force fields.
    Rosso L; Gould IR
    J Comput Chem; 2008 Jan; 29(1):24-37. PubMed ID: 17910006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Principal Component Analysis of Lipid Molecule Conformational Changes in Molecular Dynamics Simulations.
    Buslaev P; Gordeliy V; Grudinin S; Gushchin I
    J Chem Theory Comput; 2016 Mar; 12(3):1019-28. PubMed ID: 26765212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and current status of the CHARMM force field for nucleic acids.
    MacKerell AD; Banavali N; Foloppe N
    Biopolymers; 2000-2001; 56(4):257-65. PubMed ID: 11754339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modern protein force fields behave comparably in molecular dynamics simulations.
    Price DJ; Brooks CL
    J Comput Chem; 2002 Aug; 23(11):1045-57. PubMed ID: 12116391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The SAAP force field: development of the single amino acid potentials for 20 proteinogenic amino acids and Monte Carlo molecular simulation for short peptides.
    Iwaoka M; Kimura N; Yosida D; Minezaki T
    J Comput Chem; 2009 Oct; 30(13):2039-55. PubMed ID: 19140140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The SAAP force field. A simple approach to a new all-atom protein force field by using single amino acid potential (SAAP) functions in various solvents.
    Iwaoka M; Tomoda S
    J Comput Chem; 2003 Jul; 24(10):1192-200. PubMed ID: 12820126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics simulations of a new branched antimicrobial peptide: a comparison of force fields.
    Li J; Lakshminarayanan R; Bai Y; Liu S; Zhou L; Pervushin K; Verma C; Beuerman RW
    J Chem Phys; 2012 Dec; 137(21):215101. PubMed ID: 23231260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Practical considerations for building GROMOS-compatible small-molecule topologies.
    Lemkul JA; Allen WJ; Bevan DR
    J Chem Inf Model; 2010 Dec; 50(12):2221-35. PubMed ID: 21117688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TopoGromacs: Automated Topology Conversion from CHARMM to GROMACS within VMD.
    Vermaas JV; Hardy DJ; Stone JE; Tajkhorshid E; Kohlmeyer A
    J Chem Inf Model; 2016 Jun; 56(6):1112-6. PubMed ID: 27196035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of NaCl and KCl on phosphatidylcholine and phosphatidylethanolamine lipid membranes: insight from atomic-scale simulations for understanding salt-induced effects in the plasma membrane.
    Gurtovenko AA; Vattulainen I
    J Phys Chem B; 2008 Feb; 112(7):1953-62. PubMed ID: 18225878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics of DNA: comparison of force fields and terminal nucleotide definitions.
    Ricci CG; de Andrade AS; Mottin M; Netz PA
    J Phys Chem B; 2010 Aug; 114(30):9882-93. PubMed ID: 20614923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CHARMM-GUI Martini Maker for Coarse-Grained Simulations with the Martini Force Field.
    Qi Y; Ingólfsson HI; Cheng X; Lee J; Marrink SJ; Im W
    J Chem Theory Comput; 2015 Sep; 11(9):4486-94. PubMed ID: 26575938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.