These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 21425371)
1. Dendron-functionalized bis(terpyridine)-iron(II) or -cadmium(II) metallomacrocycles: synthesis, traveling-wave ion-mobility mass spectrometry, and photophysical properties. Wang JL; Li X; Lu X; Chan YT; Moorefield CN; Wesdemiotis C; Newkome GR Chemistry; 2011 Apr; 17(17):4830-8. PubMed ID: 21425371 [TBL] [Abstract][Full Text] [Related]
2. Design, synthesis, and traveling wave ion mobility mass spectrometry characterization of iron(II)- and ruthenium(II)-terpyridine metallomacrocycles. Chan YT; Li X; Yu J; Carri GA; Moorefield CN; Newkome GR; Wesdemiotis C J Am Chem Soc; 2011 Aug; 133(31):11967-76. PubMed ID: 21718066 [TBL] [Abstract][Full Text] [Related]
3. Self-assembly and traveling wave ion mobility mass spectrometry analysis of hexacadmium macrocycles. Chan YT; Li X; Soler M; Wang JL; Wesdemiotis C; Newkome GR J Am Chem Soc; 2009 Nov; 131(45):16395-7. PubMed ID: 19831351 [TBL] [Abstract][Full Text] [Related]
4. Gradient tandem mass spectrometry interfaced with ion mobility separation for the characterization of supramolecular architectures. Li X; Chan YT; Newkome GR; Wesdemiotis C Anal Chem; 2011 Feb; 83(4):1284-90. PubMed ID: 21261266 [TBL] [Abstract][Full Text] [Related]
5. Design, synthesis and photoelectrochemical properties of hexagonal metallomacrocycles based on triphenylamine: [M6(4,4'-bis(2,2':6',2''-terpyridinyl)triphenylamine)6(X)12]; [M = Fe(II), PF6- and Zn(II), BF4-]. Hwang SH; Moorefield CN; Wang P; Fronczek FR; Courtney BH; Newkome GR Dalton Trans; 2006 Aug; (29):3518-22. PubMed ID: 16855752 [TBL] [Abstract][Full Text] [Related]
6. Sterically congested, hexameric tetrakispyridinyl-Pd(II)/Cd(II)-metallomacrocycles: self-assembly and structural characterization. Perera S; Li X; Guo M; Wesdemiotis C; Moorefield CN; Newkome GR Chem Commun (Camb); 2011 Apr; 47(16):4658-60. PubMed ID: 21416092 [TBL] [Abstract][Full Text] [Related]
7. Stable, trinuclear Zn(II)- and Cd(II)-metallocycles: TWIM-MS, photophysical properties, and nanofiber formation. Schultz A; Cao Y; Huang M; Cheng SZ; Li X; Moorefield CN; Wesdemiotis C; Newkome GR Dalton Trans; 2012 Oct; 41(38):11573-5. PubMed ID: 22932747 [TBL] [Abstract][Full Text] [Related]
8. Synthesis, characterization, and ligand exchange reactivity of a series of first row divalent metal 3-hydroxyflavonolate complexes. Grubel K; Rudzka K; Arif AM; Klotz KL; Halfen JA; Berreau LM Inorg Chem; 2010 Jan; 49(1):82-96. PubMed ID: 19954165 [TBL] [Abstract][Full Text] [Related]
9. Self-Assembly of Tetrameric and Hexameric Terpyridine-Based Macrocycles Using Cd(II), Zn(II), and Fe(II). Wang L; Zhang Z; Jiang X; Irvin JA; Liu C; Wang M; Li X Inorg Chem; 2018 Apr; 57(7):3548-3558. PubMed ID: 29166005 [TBL] [Abstract][Full Text] [Related]
10. Design, self-assembly, and photophysical properties of pentameric metallomacrocycles: [M5(N-hexyl[1,2-bis(2,2':6',2''-terpyridin-4-yl)]carbazole)5][M = Fe(II), Ru(II), and Zn(II)]. Hwang SH; Wang P; Moorefield CN; Godínez LA; Manríquez J; Bustos E; Newkome GR Chem Commun (Camb); 2005 Oct; (37):4672-4. PubMed ID: 16175288 [TBL] [Abstract][Full Text] [Related]
11. Separation and characterization of metallosupramolecular libraries by ion mobility mass spectrometry. Li X; Chan YT; Casiano-Maldonado M; Yu J; Carri GA; Newkome GR; Wesdemiotis C Anal Chem; 2011 Sep; 83(17):6667-74. PubMed ID: 21744807 [TBL] [Abstract][Full Text] [Related]
12. Peak width-mass correlation in CID MS/MS of isomeric oligosaccharides using traveling-wave ion mobility mass spectrometry. Yamagaki T; Sato A J Mass Spectrom; 2009 Oct; 44(10):1509-17. PubMed ID: 19753613 [TBL] [Abstract][Full Text] [Related]
13. Wire-type ruthenium(II) complexes with terpyridine-containing [2]rotaxanes as ligands: Synthesis, characterization, and photophysical properties. Davidson GJ; Loeb SJ; Passaniti P; Silvi S; Credi A Chemistry; 2006 Apr; 12(12):3233-42. PubMed ID: 16470772 [TBL] [Abstract][Full Text] [Related]
14. Coordination features of a terpyridine-containing polyamine receptor. Effect of protonation on the photophysical properties of the complexes. Bazzicalupi C; Bencini A; Bianchi A; Borsari L; Danesi A; Giorgi C; Mariani P; Pina F; Santarelli S; Valtancoli B Dalton Trans; 2006 Dec; (48):5743-52. PubMed ID: 17146539 [TBL] [Abstract][Full Text] [Related]
15. Self-assembly of triangular metallomacrocycles using unsymmetrical bisterpyridine ligands: isomer differentiation via TWIM mass spectrometry. Liang YP; He YJ; Lee YH; Chan YT Dalton Trans; 2015 Mar; 44(11):5139-45. PubMed ID: 25677092 [TBL] [Abstract][Full Text] [Related]
16. Enhancement of luminescence lifetimes of mononuclear ruthenium(II)-terpyridine complexes by manipulation of the sigma-donor strength of ligands. Duati M; Tasca S; Lynch FC; Bohlen H; Vos JG; Stagni S; Ward MD Inorg Chem; 2003 Dec; 42(25):8377-84. PubMed ID: 14658891 [TBL] [Abstract][Full Text] [Related]
17. Stoichiometric self-assembly of shape-persistent 2D complexes: a facile route to a symmetric supramacromolecular spoked wheel. Wang JL; Li X; Lu X; Hsieh IF; Cao Y; Moorefield CN; Wesdemiotis C; Cheng SZ; Newkome GR J Am Chem Soc; 2011 Aug; 133(30):11450-3. PubMed ID: 21657251 [TBL] [Abstract][Full Text] [Related]
18. Soluble heterometallic coordination polymers based on a bis-terpyridine-functionalized dioxocyclam ligand. Gasnier A; Barbe JM; Bucher C; Duboc C; Moutet JC; Saint-Aman E; Terech P; Royal G Inorg Chem; 2010 Mar; 49(6):2592-9. PubMed ID: 19961146 [TBL] [Abstract][Full Text] [Related]
19. Hexagonal terpyridine--ruthenium and -iron macrocyclic complexes by stepwise and self-assembly procedures. Newkome GR; Cho TJ; Moorefield CN; Cush R; Russo PS; Godínez LA; Saunders MJ; Mohapatra P Chemistry; 2002 Jul; 8(13):2946-54. PubMed ID: 12489224 [TBL] [Abstract][Full Text] [Related]
20. Synthesis and photophysical properties of stilbeneoctasilsesquioxanes. Emission behavior coupled with theoretical modeling studies suggest a 3-D excited state involving the silica core. Laine RM; Sulaiman S; Brick C; Roll M; Tamaki R; Asuncion MZ; Neurock M; Filhol JS; Lee CY; Zhang J; Goodson T; Ronchi M; Pizzotti M; Rand SC; Li Y J Am Chem Soc; 2010 Mar; 132(11):3708-22. PubMed ID: 20187633 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]