These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
280 related articles for article (PubMed ID: 21425466)
1. Superiority of branched side chains in spontaneous nanowire formation: exemplified by poly(3-2-methylbutylthiophene) for high-performance solar cells. Chen HC; Wu IC; Hung JH; Chen FJ; Chen IW; Peng YK; Lin CS; Chen CH; Sheng YJ; Tsao HK; Chou PT Small; 2011 Apr; 7(8):1098-107. PubMed ID: 21425466 [TBL] [Abstract][Full Text] [Related]
2. Evolved phase separation toward balanced charge transport and high efficiency in polymer solar cells. Fan H; Zhang M; Guo X; Li Y; Zhan X ACS Appl Mater Interfaces; 2011 Sep; 3(9):3646-53. PubMed ID: 21815608 [TBL] [Abstract][Full Text] [Related]
3. Low-band-gap conjugated polymers of dithieno[2,3-b:7,6-b]carbazole and diketopyrrolopyrrole: effect of the alkyl side chain on photovoltaic properties. Deng Y; Chen Y; Liu J; Liu L; Tian H; Xie Z; Geng Y; Wang F ACS Appl Mater Interfaces; 2013 Jun; 5(12):5741-7. PubMed ID: 23719384 [TBL] [Abstract][Full Text] [Related]
4. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. Li Y Acc Chem Res; 2012 May; 45(5):723-33. PubMed ID: 22288572 [TBL] [Abstract][Full Text] [Related]
5. Side-chain tunability of furan-containing low-band-gap polymers provides control of structural order in efficient solar cells. Yiu AT; Beaujuge PM; Lee OP; Woo CH; Toney MF; Fréchet JM J Am Chem Soc; 2012 Feb; 134(4):2180-5. PubMed ID: 22191680 [TBL] [Abstract][Full Text] [Related]
6. A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance. Liang Y; Yu L Acc Chem Res; 2010 Sep; 43(9):1227-36. PubMed ID: 20853907 [TBL] [Abstract][Full Text] [Related]
7. Molecular bulk heterojunctions: an emerging approach to organic solar cells. Roncali J Acc Chem Res; 2009 Nov; 42(11):1719-30. PubMed ID: 19580313 [TBL] [Abstract][Full Text] [Related]
8. Increasing the open-circuit voltage in high-performance organic photovoltaic devices through conformational twisting of an indacenodithiophene-based conjugated polymer. Chen CP; Hsu HL Macromol Rapid Commun; 2013 Oct; 34(20):1623-8. PubMed ID: 24038305 [TBL] [Abstract][Full Text] [Related]
9. Bis(thienothiophenyl) diketopyrrolopyrrole-based conjugated polymers with various branched alkyl side chains and their applications in thin-film transistors and polymer solar cells. Shin J; Park GE; Lee DH; Um HA; Lee TW; Cho MJ; Choi DH ACS Appl Mater Interfaces; 2015 Feb; 7(5):3280-8. PubMed ID: 25590328 [TBL] [Abstract][Full Text] [Related]
10. Controlled conjugated backbone twisting for an increased open-circuit voltage while having a high short-circuit current in poly(hexylthiophene) derivatives. Ko S; Hoke ET; Pandey L; Hong S; Mondal R; Risko C; Yi Y; Noriega R; McGehee MD; Brédas JL; Salleo A; Bao Z J Am Chem Soc; 2012 Mar; 134(11):5222-32. PubMed ID: 22385287 [TBL] [Abstract][Full Text] [Related]
11. A stamped PEDOT:PSS-silicon nanowire hybrid solar cell. Moiz SA; Nahhas AM; Um HD; Jee SW; Cho HK; Kim SW; Lee JH Nanotechnology; 2012 Apr; 23(14):145401. PubMed ID: 22433819 [TBL] [Abstract][Full Text] [Related]
12. Grooved nanowires from self-assembling hairpin molecules for solar cells. Tevis ID; Tsai WW; Palmer LC; Aytun T; Stupp SI ACS Nano; 2012 Mar; 6(3):2032-40. PubMed ID: 22397738 [TBL] [Abstract][Full Text] [Related]
13. Efficient green solar cells via a chemically polymerizable donor-acceptor heterocyclic pentamer. Subbiah J; Beaujuge PM; Choudhury KR; Ellinger S; Reynolds JR; So F ACS Appl Mater Interfaces; 2009 Jun; 1(6):1154-8. PubMed ID: 20355905 [TBL] [Abstract][Full Text] [Related]
14. Oxide nanowires for solar cell applications. Zhang Q; Yodyingyong S; Xi J; Myers D; Cao G Nanoscale; 2012 Mar; 4(5):1436-45. PubMed ID: 22200055 [TBL] [Abstract][Full Text] [Related]
15. Studying polymer/fullerene intermixing and miscibility in laterally patterned films with X-ray spectromicroscopy. He X; Collins BA; Watts B; Ade H; McNeill CR Small; 2012 Jun; 8(12):1920-7. PubMed ID: 22473826 [TBL] [Abstract][Full Text] [Related]
16. Charge mobility and recombination in a new hole transporting polymer and its photovoltaic blend. Tan MJ; Goh WP; Li J; Pundir G; Chellappan V; Chen ZK ACS Appl Mater Interfaces; 2010 May; 2(5):1414-20. PubMed ID: 20415440 [TBL] [Abstract][Full Text] [Related]
17. Self-assembled hybrid polymer-TiO2 nanotube array heterojunction solar cells. Shankar K; Mor GK; Prakasam HE; Varghese OK; Grimes CA Langmuir; 2007 Nov; 23(24):12445-9. PubMed ID: 17958387 [TBL] [Abstract][Full Text] [Related]
18. A strategic buffer layer of polythiophene enhances the efficiency of bulk heterojunction solar cells. Wei HY; Huang JH; Ho KC; Chu CW ACS Appl Mater Interfaces; 2010 May; 2(5):1281-5. PubMed ID: 20450193 [TBL] [Abstract][Full Text] [Related]
19. Mechanism and control of the structural evolution of a polymer solar cell from a bulk heterojunction to a thermally unstable hierarchical structure. Chen CY; Tsao CS; Huang YC; Liu HW; Chiu WY; Chuang CM; Jeng US; Su CJ; Wu WR; Su WF; Wang L Nanoscale; 2013 Aug; 5(16):7629-38. PubMed ID: 23846751 [TBL] [Abstract][Full Text] [Related]
20. Low-bandgap poly(thiophene-phenylene-thiophene) derivatives with broaden absorption spectra for use in high-performance bulk-heterojunction polymer solar cells. Chen CP; Chan SH; Chao TC; Ting C; Ko BT J Am Chem Soc; 2008 Sep; 130(38):12828-33. PubMed ID: 18759400 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]