BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 21425602)

  • 21. Extensive study on electrocution at the Bureau of Legal Medicine of Milan (1993-2017): Determination of the current mark with scanning electron microscope/energy-dispersive X-ray analysis on paraffin-embedded samples.
    Boracchi M; Crudele GDL; Gentile G; Maciocco F; Maghin F; Marchesi M; Muccino E; Zoja R
    Med Leg J; 2019 Jun; 87(2):67-73. PubMed ID: 30968747
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The contribution of trace elements from smokeless powder to post firing residues.
    Miyauchi H; Kumihashi M; Shibayama T
    J Forensic Sci; 1998 Jan; 43(1):90-6. PubMed ID: 9456530
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of scanning electron microscopy and x-ray microanalysis in the identification of urinary crystals.
    Khan SR; Hackett RL
    Scanning Microsc; 1987 Sep; 1(3):1405-11. PubMed ID: 3659871
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Energy Dispersive X-ray (EDX) microanalysis: A powerful tool in biomedical research and diagnosis.
    Scimeca M; Bischetti S; Lamsira HK; Bonfiglio R; Bonanno E
    Eur J Histochem; 2018 Mar; 62(1):2841. PubMed ID: 29569878
    [TBL] [Abstract][Full Text] [Related]  

  • 25. X-ray microanalysis with the environmental scanning electron microscope: interpretation of data obtained under different atmospheric conditions.
    Sigee DC; Gilpin C
    Scanning Microsc Suppl; 1994; 8():219-27; discussion 227-9. PubMed ID: 7638489
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Application of high-angle annular dark field scanning transmission electron microscopy, scanning transmission electron microscopy-energy dispersive X-ray spectrometry, and energy-filtered transmission electron microscopy to the characterization of nanoparticles in the environment.
    Utsunomiya S; Ewing RC
    Environ Sci Technol; 2003 Feb; 37(4):786-91. PubMed ID: 12636280
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of histological findings and the results of energy-dispersive X-ray spectrometry analysis in experimental electrical injury.
    Tanaka N; Takakura A; Miyatake N; Jamal M; Ito A; Kumihashi M; Tsutsui K; Ameno K; Kinoshita H
    Leg Med (Tokyo); 2018 Mar; 31():20-23. PubMed ID: 29272754
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assessing trace metals in leaves of Quercus ilex L. by energy dispersive X-ray spectrometry.
    Alfani A; Arpaia C; Cafiero G
    J Trace Elem Med Biol; 1997 Nov; 11(3):188-90. PubMed ID: 9442471
    [No Abstract]   [Full Text] [Related]  

  • 29. Semi-automatic detection of gunshot residue (GSR) by scanning electron microscopy and energy dispersive X-ray analysis (SEM/EDX).
    Gansau H; Becker U
    Scan Electron Microsc; 1982; (Pt 1):107-14. PubMed ID: 7167744
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nutrient amounts of ectomycorrhizae analysed by EDX using ESEM and ICP.
    Rumberger MD; Lentzsch P; Münzenberger B; Hüttl RF
    Mycorrhiza; 2005 Jun; 15(4):307-12. PubMed ID: 15726433
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microanalytical studies of metal localization in biological tissues by environmental SEM.
    Egerton-Warburton LM; Griffin BJ; Kuo J
    Microsc Res Tech; 1993 Aug; 25(5-6):406-11. PubMed ID: 8400432
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Automated analysis of SEM X-ray spectral images: a powerful new microanalysis tool.
    Kotula PG; Keenan MR; Michael JR
    Microsc Microanal; 2003 Feb; 9(1):1-17. PubMed ID: 12597783
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Determination of metallization with energy-dispersive X-ray fluorescent spectrometry in experimental electric injury.
    Tanaka N; Kinoshita H; Jamal M; Ito A; Yamashita T; Nagata K; Miyatake N
    Leg Med (Tokyo); 2020 Nov; 47():101768. PubMed ID: 32738701
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Documentation of environmental particulate exposures in humans using SEM and EDXA.
    Abraham JL
    Scan Electron Microsc; 1979; (2):751-66. PubMed ID: 392730
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Application of SEM and EDX in studying biomineralization in plant tissues.
    He H; Kirilak Y
    Methods Mol Biol; 2014; 1117():663-75. PubMed ID: 24357384
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analytical electron microscopy as a powerful tool in plant cell biology: examples using electron energy loss spectroscopy and X-ray microanalysis.
    Lichtenberger O; Neumann D
    Eur J Cell Biol; 1997 Aug; 73(4):378-86. PubMed ID: 9270881
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Using of atomic absorption spectrometry for diagnosis of electrical injuries (an experimental rat study).
    Acar K; Boz B; Kurtulus A; Divrikli U; Elci L
    Forensic Sci Int; 2004 Dec; 146 Suppl():S3-4. PubMed ID: 15639579
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Usefulness of elastica-van Gieson stain for the pathomorphological diagnosis of a cutaneous electric mark--a fatal electrocution case during arc welding.
    Imamura T; Tokunaga H; Ise H; Jitsufuchi N; Kudo K
    Fukuoka Igaku Zasshi; 1997 Feb; 88(2):23-6. PubMed ID: 9071051
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Combined application of QEM-SEM and hard X-ray microscopy to determine mineralogical associations and chemical speciation of trace metals.
    Gräfe M; Landers M; Tappero R; Austin P; Gan B; Grabsch A; Klauber C
    J Environ Qual; 2011; 40(3):767-83. PubMed ID: 21546662
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An electrocution by metal kite line.
    Wankhede AG; Sariya DR
    Forensic Sci Int; 2006 Nov; 163(1-2):141-3. PubMed ID: 16280218
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.